洛谷P8567 真·基础数论问题
基础数论重定向
今天蒟蒻切水题切到一道建议评黄的红题,一下子给我整不会了……
题目传送门
理解题意
首先,我们要理解题意。
[JRKSJ R6] Nothing
我们定义 \(f(x)\) 表示 \(x\) 在 \(2\) 进制下最低的 \(1\) 的位置(你需要注意,二进制下的最低位是第 $0 $ 位)。以下是其在 C++ 语言中的代码(未考虑数据类型造成的问题):
int f(int x){
int ans = 0;
while (x % 2 == 0){
x /= 2;
ans += 1;
}
return ans;
}
共有 \(T\) 组询问,每组询问给定区间 \([l,r]\),求有多少个 \(i\in [l,r]\) 使得 \(f(i)< f(i+1)\)。
打眼一看这啥呀?让我给你翻译翻译什么叫¥#@惊喜……
这题的意思就是:定义\(f(x)=(n)max\) 使得 \(x \ mod \ 2^n==0\)
继续翻译:\(f(x)\)指的是数\(x\)的二进制的从右往左数的第一个\(1\)前面的\(0\)的个数。
还是不懂?我们来一套数据帮助理解:
我们这里有一个数:\(114514\)
我们将这个数转化成二进制:
\(11011111101010010\)
可以看到这个数的\(f(x)\)指的是数\(x\)的二进制的从右往左数的第一个\(1\)前面的\(0\)的个数是1。
而整道题的意思就是给定区间\([l,r]\)要求出在这个区间符合\(f(x) < f(x+1)\)的\(x\)的个数。
思路
我们先看看数据规模哈:
数据规模
本题采用捆绑测试。
| \(\text{Subtask}\) | \(T\le\) | 特殊限制 | \(\text{Score}\) |
|---|---|---|---|
| \(1\) | \(10^5\) | \(l=r\) | \(10\) |
| \(2\) | \(10^4\) | \(r-l\le10^3\) | \(30\) |
| \(3\) | \(10^5\) | \(r\le10^6\) | \(20\) |
| \(4\) | \(10^5\) | 无 | \(40\) |
对于 \(100\%\) 的数据,\(1\le T\le 10^5\),\(1\le l\le r\le 10^{18}\)。
首先考虑一下,既然玩的是二进制,那我们敏锐的认为与奇偶性有关。
我们仔细研究后得出以下几条性质:
- 奇数后面一定是偶数,偶数后面一定是奇数(废话……)
- 对于任意偶数\(x\),不满足\(f(x) < f(x+1)\)
- 对于任意奇数\(x\),满足\(f(x) < f(x+1)\)
我们来看下怎么出来的:
首先奇数的二进制最右边一定是1,因为它无法被2整除。
然后偶数的二进制最右边一定是0,因为它能被2整除。
如果实在理解不了我们打一个奇偶数表来看看:
| 数字 | 二进制 |
|---|---|
| \(1\) | \(1\) |
| \(2\) | \(10\) |
| \(3\) | \(11\) |
| \(4\) | \(100\) |
| \(5\) | \(101\) |
| \(6\) | \(110\) |
| \(7\) | \(111\) |
| \(8\) | \(1000\) |
| \(9\) | \(1001\) |
| \(10\) | \(1010\) |
就能发现奇数末尾是1,偶数末尾是0。
这几个性质你可以细品品,就能发现,哇!
这道题我们已经 \(O(1)\)解决了!
怎么解决的?
对于一个区间\([l,r]\),我们找到其中奇数的个数就行了!。
怎么找呢?
代码T_T
请看代码:
#include<bits/stdc++.h>
using namespace std;
long long l,r,ans;
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%lld %lld",&l,&r);
if(l==r){
printf("%lld\n",l%2);
}else{
ans=0;
if(l%2){
ans++;
l++;
}
if(r%2){
ans++;
r--;
}
if(l>r){
printf("%lld\n",ans);
}else{
printf("%lld\n",(r-l)/2+ans);
}
}
}
return 0;
}
思路大致是这样:
- 如果l==r,那么直接输出l是否为奇数。
- 如果不相等
- 如果l为奇数,l+1,ans+1
- 如果r为奇数,r-1,ans+1
- 此时l,r一定都为偶数。
- 若l超过r直接输出ans
- 若没有,ans+(r-l)/2便是答案,这个自己推一下就好
完结撒花
洛谷P8567 真·基础数论问题的更多相关文章
- 洛谷P4778 Counting swaps 数论
正解:数论 解题报告: 传送门! 首先考虑最终的状态是固定的,所以可以知道初始状态的每个数要去哪个地方,就可以考虑给每个数$a$连一条边,指向一个数$b$,表示$a$最后要移至$b$所在的位置 显然每 ...
- 洛谷P4562 [JXOI2018]游戏 数论
正解:数论 解题报告: 传送门! 首先考虑怎么样的数可能出现在t(i)那个位置上?显然是[l,r]中所有无法被表示出来的数(就约数不在[l,r]内的数嘛QwQ 所以可以先把这些数筛出来 具体怎么筛的话 ...
- 洛谷P1134 阶乘问题[数论]
题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 = 479,001, ...
- 洛谷P2398 GCD SUM [数论,欧拉筛]
题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...
- 洛谷P2231 [HNOI2002]跳蚤 [数论,容斥原理]
题目传送门 跳蚤 题目描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+ ...
- 洛谷P1414 又是毕业季 [数论]
题目传送门 又是毕业季 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在 ...
- 洛谷 - P1403 - 约数研究 - 数论
https://www.luogu.org/problemnew/show/P1403 可以直接用线性筛约数个数求出来,但实际上n以内i的倍数的个数为n/i的下整,要求的其实是 $$\sum\limi ...
- 洛谷1387(基础二维dp)
题目很简单,数据也很小,但是思路不妨借鉴:dp[i][j]代表以(i,j)为右下角的最长正方形边长. 类比一维里面设“以XX为结尾的最XXX(所求)”. 另外define不要乱用!尤其这种min套mi ...
- 洛谷P1331-搜索基础-什么是矩形?(我的方案)
原题链接:https://www.luogu.com.cn/problem/P1331 简单来说就是给出一个由‘#’和‘.‘组成的矩阵.需要识别存在几个矩形(被完全填充的).如果有矩形相互衔接则认为出 ...
随机推荐
- 驱动开发:内核枚举Registry注册表回调
在笔者上一篇文章<驱动开发:内核枚举LoadImage映像回调>中LyShark教大家实现了枚举系统回调中的LoadImage通知消息,本章将实现对Registry注册表通知消息的枚举,与 ...
- 前端JS模板引擎Mustache.js的用法
Mustache.js在前端是一个非常强大的模板 Mustache用法参考
- Websocket集群解决方案
最近在项目中在做一个消息推送的功能,比如客户下单之后通知给给对应的客户发送系统通知,这种消息推送需要使用到全双工的websocket推送消息. 所谓的全双工表示客户端和服务端都能向对方发送消息.不使用 ...
- RabbitMq消息手动应答、放回队列重新消费、设置队列消息持久化、分发模式
RabbitMq消息手动应答,放回队列重新消费,设置队列消息持久化 消息应答 概念 消费者完成一个任务可能需要一段时间,如果其中一个消费者处理一个长的任务并仅只完成了部分突然它挂掉了,会发生什么情况. ...
- [ERROR] mariadbd: The table 'INNODB_BUFFER_PAGE' is full
问题描述:将information_schema导出sql文件到新库中恢复,sql中的表都是临时表,存储引擎都是memory,在导入的过程中实际大量会占用临时表. 报错信息:ERROR 1114 (H ...
- 在CentOS编译Git源码
Git 是一个免费的开源分布式版本控制系统,旨在处理从小到小到的所有内容 具有速度和效率的超大型项目. Git易于学习,占用空间很小,性能快如闪电. 它超越了Subversion,CVS,Perfor ...
- X活手环的表盘自定义修改
文章用到的所有工具及软件成品 前言 前几天我在某宝买了一个智能手环,无奈软件中的表盘太少,所有我想着修改一下app中的资源文件. 反编译APK 这里反编译APK用apktool工具就可以. apkto ...
- vivo大数据日志采集Agent设计实践
作者:vivo 互联网存储技术团队- Qiu Sidi 在企业大数据体系建设过程中,数据采集是其中的首要环节.然而,当前行业内的相关开源数据采集组件,并无法满足企业大规模数据采集的需求与有效的数据采集 ...
- js this获取元素ID
<table id="cyyj_table" class="table01" cellpadding="5" cellspacing= ...
- MySQL数据库下载以及启动软件的详细步骤
第一步>>>在浏览器上百度上搜索MySQL 如何判断官网?有官网两个字的或者纯英文解释的大概率就是官网 第二步>>>点击DOWNLOAWDS 第三步>> ...