HDU3572 Task Schedule 【最大流】
Task Schedule
has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted
and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible
schedule every task that can be finished will be done before or at its end day.
Print a blank line after each test case.
2
4 3
1 3 5
1 1 4
2 3 7
3 5 9 2 2
2 1 3
1 2 2
Case 1: Yes Case 2: Yes
题意:有n个机器,m项任务,每一个任务须要Pi天时间,开工日期到收工日期为Si到Ei。一次仅仅能在一台机器上加工,能够挪到别的机器上,问是否能按期完毕全部任务。
题解:这题关键在构图,设置一个源点到每项任务有一条边,容量为该项任务所须要的天数,每项任务到合法加工日期内的每一个天数加一条边,容量为1,即每天工作量为1。然后每一个天数到汇点加入一条边,容量为机器数量n。表示一天最大加工量。
218ms
#include <stdio.h>
#include <string.h> #define maxn 1200
#define maxm 700000
#define inf 0x3f3f3f3f int head[maxn], n, m, id; // n machines
struct Node {
int u, v, c, next;
} E[maxm];
int source, sink, tar, maxDay, nv;
int que[maxn], Layer[maxn], pre[maxn];
bool vis[maxn]; void addEdge(int u, int v, int c) {
E[id].u = u; E[id].v = v;
E[id].c = c; E[id].next = head[u];
head[u] = id++; E[id].u = v; E[id].v = u;
E[id].c = 0; E[id].next = head[v];
head[v] = id++;
} void getMap() {
int i, j, u, v, p, s, e;
id = tar = maxDay = 0;
scanf("%d%d", &m, &n);
memset(head, -1, sizeof(head));
source = 0; sink = 705;
for(i = 1; i <= m; ++i) {
scanf("%d%d%d", &p, &s, &e);
tar += p;
if(e > maxDay) maxDay = e;
addEdge(source, i, p);
for(j = s; j <= e; ++j)
addEdge(i, m + j, 1);
}
sink = m + maxDay + 1; nv = sink + 1;
for(i = 1; i <= maxDay; ++i)
addEdge(m + i, sink, n);
} bool countLayer() {
memset(Layer, 0, sizeof(int) * nv);
int id = 0, front = 0, u, v, i;
Layer[source] = 1; que[id++] = source;
while(front != id) {
u = que[front++];
for(i = head[u]; i != -1; i = E[i].next) {
v = E[i].v;
if(E[i].c && !Layer[v]) {
Layer[v] = Layer[u] + 1;
if(v == sink) return true;
else que[id++] = v;
}
}
}
return false;
} int Dinic() {
int i, u, v, minCut, maxFlow = 0, pos, id = 0;
while(countLayer()) {
memset(vis, 0, sizeof(bool) * nv);
memset(pre, -1, sizeof(int) * nv);
que[id++] = source; vis[source] = 1;
while(id) {
u = que[id - 1];
if(u == sink) {
minCut = inf;
for(i = pre[sink]; i != -1; i = pre[E[i].u])
if(minCut > E[i].c) {
minCut = E[i].c; pos = E[i].u;
}
maxFlow += minCut;
for(i = pre[sink]; i != -1; i = pre[E[i].u]) {
E[i].c -= minCut;
E[i^1].c += minCut;
}
while(que[id-1] != pos)
vis[que[--id]] = 0;
} else {
for(i = head[u]; i != -1; i = E[i].next)
if(E[i].c && Layer[u] + 1 == Layer[v = E[i].v] && !vis[v]) {
vis[v] = 1; que[id++] = v; pre[v] = i; break;
}
if(i == -1) --id;
}
}
}
return maxFlow;
} void solve(int cas) {
printf("Case %d: %s\n\n", cas, tar == Dinic() ? "Yes" : "No");
} int main() {
// freopen("stdin.txt", "r", stdin);
int t, cas;
scanf("%d", &t);
for(cas = 1; cas <= t; ++cas) {
getMap();
solve(cas);
}
return 0;
}
62ms
#include <stdio.h>
#include <string.h> #define maxn 1200
#define maxm 700000 int head[maxn], n, m, id; // n machines
struct Node {
int u, v, c, next;
} E[maxm];
int source, sink, tar, maxDay, nv; const int inf = 0x3f3f3f3f; int cur[maxn], ps[maxn], dep[maxn]; void addEdge(int u, int v, int c) {
E[id].u = u; E[id].v = v;
E[id].c = c; E[id].next = head[u];
head[u] = id++; E[id].u = v; E[id].v = u;
E[id].c = 0; E[id].next = head[v];
head[v] = id++;
} void getMap() {
int i, j, u, v, p, s, e;
id = tar = maxDay = 0;
scanf("%d%d", &m, &n);
memset(head, -1, sizeof(head));
source = 0;
for(i = 1; i <= m; ++i) {
scanf("%d%d%d", &p, &s, &e);
tar += p;
if(e > maxDay) maxDay = e;
addEdge(source, i, p);
for(j = s; j <= e; ++j)
addEdge(i, m + j, 1);
}
sink = m + maxDay + 1; nv = sink + 1;
for(i = 1; i <= maxDay; ++i)
addEdge(m + i, sink, n);
} // 參数:顶点个数。源点,汇点
int Dinic(int n, int s, int t) {
int tr, res = 0;
int i, j, k, f, r, top;
while(true) {
memset(dep, -1, n * sizeof(int));
for(f = dep[ps[0] = s] = 0, r = 1; f != r; )
for(i = ps[f++], j = head[i]; j != -1; j = E[j].next) {
if(E[j].c && -1 == dep[k=E[j].v]) {
dep[k] = dep[i] + 1; ps[r++] = k;
if(k == t) {
f = r; break;
}
}
}
if(-1 == dep[t]) break; memcpy(cur, head, n * sizeof(int));
for(i = s, top = 0; ; ) {
if(i == t) {
for(k = 0, tr = inf; k < top; ++k)
if(E[ps[k]].c < tr) tr = E[ps[f=k]].c;
for(k = 0; k < top; ++k)
E[ps[k]].c -= tr, E[ps[k]^1].c += tr;
res += tr; i = E[ps[top = f]].u;
}
for(j = cur[i]; cur[i] != -1; j = cur[i] = E[cur[i]].next)
if(E[j].c && dep[i] + 1 == dep[E[j].v]) break;
if(cur[i] != -1) {
ps[top++] = cur[i];
i = E[cur[i]].v;
} else {
if(0 == top) break;
dep[i] = -1; i = E[ps[--top]].u;
}
}
}
return res;
} void solve(int cas) {
printf("Case %d: %s\n\n", cas, tar == Dinic(nv, source, sink) ? "Yes" : "No");
} int main() {
// freopen("stdin.txt", "r", stdin);
int t, cas;
scanf("%d", &t);
for(cas = 1; cas <= t; ++cas) {
getMap();
solve(cas);
}
return 0;
}
HDU3572 Task Schedule 【最大流】的更多相关文章
- HDU3572 Task Schedule(最大流+构图思维)
题意: 有N个任务M个机器,给每个任务i完成所花费的时间Pi且每个任务要在第Si天后开始,在第Ei天前结束,保证任务在(S,E)之间一定能完成. 每个机器在一天里只能运行一个任务,一个任务可以在中途更 ...
- HDU 3572 Task Schedule (最大流)
C - Task Schedule Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- HDU3572:Task Schedule【最大流】
上了一天课 心塞塞的 果然像刘老师那么说 如果你有挂科+4级没过 那基本上是WF队 题目大意:有时间补吧 思路:给每个任务向每个时间点连边容量为1 每个时间点向汇点连边 容量为机器的个数 源点向每个任 ...
- hdu-3572 Task Schedule---最大流判断满流+dinic算法
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3572 题目大意: 给N个任务,M台机器.每个任务有最早才能开始做的时间S,deadline E,和持 ...
- HDU 3572 Task Schedule(拆点+最大流dinic)
Task Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 3572 Task Schedule(最大流&&建图经典&&dinic)
Task Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 3572 Task Schedule
Task Schedule 题意:有N个任务,M台机器.每一个任务给S,P,E分别表示该任务的(最早开始)开始时间,持续时间和(最晚)结束时间:问每一个任务是否能在预定的时间区间内完成: 注:每一个任 ...
- hdu 3572 Task Schedule (dinic算法)
pid=3572">Task Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU3572Task Schedule(最大流 ISAP比較快)建图方法不错
Task Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
随机推荐
- bjfu1211 推公式,筛素数
题目是求fun(n)的值 fun(n)= Gcd(3)+Gcd(4)+…+Gcd(i)+…+Gcd(n).Gcd(n)=gcd(C[n][1],C[n][2],……,C[n][n-1])C[n][k] ...
- iOS数据存储之属性列表理解
iOS数据存储之属性列表理解 数据存储简介 数据存储,即数据持久化,是指以何种方式保存应用程序的数据. 我的理解是,开发了一款应用之后,应用在内存中运行时会产生很多数据,这些数据在程序运行时和程序一起 ...
- support vector regression与 kernel ridge regression
前一篇,我们将SVM与logistic regression联系起来,这一次我们将SVM与ridge regression(之前的linear regression)联系起来. (一)kernel r ...
- Java-note-调试小技巧
使用 Eclipse 调试 Java 程序的 10 个技巧 英文原文:Again! – 10 Tips on Java Debugging with Eclipse 你应该看过一些如<关于调试的 ...
- Java集合排序(看完秒懂)
比如将一个List<Student>排序,则有两种方式: 1:Student实现Comparable接口: 2:给排序方法传递一个Comparator参数: 请看下面的举例: Studen ...
- JAVA中“==”与equals()方法区别
equals 方法是 java.lang.Object 类的方法 有两种用法说明: ()对于字符串变量来说,使用"=="和"equals()"方法比较字符串时, ...
- Red5下的room
http://blog.csdn.net/whycold/article/details/6142475 package com.test; import java.util.ArrayList;im ...
- HDU 5787 K-wolf Number (数位DP)
K-wolf Number 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5787 Description Alice thinks an integ ...
- [iOS 多线程 & 网络 - 2.10] - ASI框架下载文件
A.ASI框架中的下载 1.实现步骤 在实际的开发中如果要使用asi框架来下载服务器上的文件,只需要执行下面简单的几个步骤即可. (1)创建请求对象:(2)设置下载文件保存的路径:(3)发送下载文件的 ...
- [C语言 - 8] 枚举enum
枚举是c语言中得一种基本数据类型,不是数据结构 用于声明一组常数 1. 3中枚举变量的方式 a. 先定义类型, 再定义变量 b. 同时定义类型和变量 c. 匿名定义 enum Season {Spri ...