Exercise 1:Linear Regression---实现一个线性回归

重要公式

1.h(θ)函数

2.J(θ)函数

思考一下,在matlab里面怎么表达?如下:

原理如下:(如果你懂了这道作业题,上面的也就懂了)

下面通过图形方式感受一下代价函数 :

3.θ迭代过程(梯度下降)

First way:批梯度下降:(编程作业使用这个公式,sum转换同理J(θ))

Second way:随机梯度下降:

好比我们下山,每次在一点环顾四周,往最陡峭的路向下走,用图形的方式更形象的表示 :

4.θ的直接求解法(让代价函数导数为0,求θ值)

编程作业答案(红色为添加代码)

1.warmUpExercise.m

function A = warmUpExercise()
%WARMUPEXERCISE Example function in octave
% A = WARMUPEXERCISE() is an example function that returns the 5x5 identity matrix % ============= YOUR CODE HERE ==============
% Instructions: Return the 5x5 identity matrix
% In octave, we return values by defining which variables
% represent the return values (at the top of the file)
% and then set them accordingly. A = eye(5,5); % =========================================== end

2.plotData.m

function plotData(x, y)
%PLOTDATA Plots the data points x and y into a new figure
% PLOTDATA(x,y) plots the data points and gives the figure axes labels of
% population and profit. figure; % open a new figure window % ====================== YOUR CODE HERE ======================
% Instructions: Plot the training data into a figure using the
% "figure" and "plot" commands. Set the axes labels using
% the "xlabel" and "ylabel" commands. Assume the
% population and revenue data have been passed in
% as the x and y arguments of this function.
%
% Hint: You can use the 'rx' option with plot to have the markers
% appear as red crosses. Furthermore, you can make the
% markers larger by using plot(..., 'rx', 'MarkerSize', 10); plot(x,y, 'rx', 'MarkerSize', 10);
xlabel('Population of City in 10,000s');
ylabel('Profit in $10,000s'); % ============================================================ end

3.gradientDescent.m

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, ); for iter = :num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.
%
% ============================================================
  theta = theta - (alpha/m)*X'*(X*theta-y); % theta 就是用上面的向量表示法的 matlab 语言实现
    % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); end end

4.computeCost.m

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = 0; % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost. J=1/(2*m)*(X*theta-y)'*(X*theta-y); % ========================================================================= end

5.运行结果

                      For population = 35,000, we predict a profit of 4519.767868
                      For population = 70,000, we predict a profit of 45342.450129

Stanford coursera Andrew Ng 机器学习课程第二周总结(附Exercise 1)的更多相关文章

  1. Stanford coursera Andrew Ng 机器学习课程编程作业(Exercise 2)及总结

    Exercise 1:Linear Regression---实现一个线性回归 关于如何实现一个线性回归,请参考:http://www.cnblogs.com/hapjin/p/6079012.htm ...

  2. Stanford coursera Andrew Ng 机器学习课程编程作业(Exercise 1)

    Exercise 1:Linear Regression---实现一个线性回归 在本次练习中,需要实现一个单变量的线性回归.假设有一组历史数据<城市人口,开店利润>,现需要预测在哪个城市中 ...

  3. Stanford coursera Andrew Ng 机器学习课程第四周总结(附Exercise 3)

    Introduction Neural NetWork的由来 时,我们可以对它进行处理,分类.但是当特征数增长为时,分类器的效率就会很低了. Neural NetWork模型 该图是最简单的神经网络, ...

  4. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测

    Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 14—Dimensionality Reduction 降维

    Lecture 14 Dimensionality Reduction 降维 14.1 降维的动机一:数据压缩 Data Compression 现在讨论第二种无监督学习问题:降维. 降维的一个作用是 ...

  6. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 12—Support Vector Machines 支持向量机

    Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machi ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 1_Introduction and Basic Concepts 介绍和基本概念

    目录 1.1 欢迎1.2 机器学习是什么 1.2.1 机器学习定义 1.2.2 机器学习算法 - Supervised learning 监督学习 - Unsupervised learning  无 ...

  8. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  9. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 16—Recommender Systems 推荐系统

    Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到 ...

随机推荐

  1. 源码分析-react1-根节点渲染

  2. Mentor.Graphics.FloTHERM.XT.2.3+Mentor.Graphics.Flowmaster.7.9.4

    Mentor.Graphics.FloTHERM.XT.2.3 Mentor.Graphics.Flowmaster.7.9.4 AVL.CRUISE.V2015.0-车辆动力学仿真分析平台 AVL. ...

  3. POJ 2485 Highways 最小生成树 (Kruskal)

    Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has no public h ...

  4. [Vue @Component] Pass Props Between Components with Vue Slot Scope & renderless component

    Components with slots can expose their data by passing it into the slot and exposing the data using  ...

  5. ios測试的时候出现错误

    dyld: Library not loaded: @rpath/XCTest.framework/XCTest   Referenced from: /Users/zhumin/Library/De ...

  6. 【java项目实践】具体解释Ajax工作原理以及实现异步验证username是否存在+源代码下载(java版)

    一年前,从不知道Ajax是什么,伴随着不断的积累,到如今常常使用,逐渐有了深入的认识. 今天,假设想开发一个更加人性化,友好,无刷新,交互性更强的网页,那您的目标一定是Ajax. 介绍 在具体讨论Aj ...

  7. phpstorm安装和调试

    首先: phpstorm是用JAVA开发的,所以在安装之前须要先安装jdk sudo apt-get install default-jdk 从官网上下载phpstorm 的linux版本号 http ...

  8. Android Studio最新配置教程2016

    http://blog.csdn.net/wen_demo 一.Android studio 基本简单介绍 1.Android studio和Eclipse的差别: 1.Studio中有Project ...

  9. What is a good buffer size for socket programming?

    http://stackoverflow.com/questions/2811006/what-is-a-good-buffer-size-for-socket-programming 问题: We ...

  10. Dictionary<string, string>是一个泛型使用说明

    Dictionary<string, string>是一个泛型使用说明 Posted on 2010-08-05 15:03 moss_tan_jun 阅读(2273) 评论(0) 编辑  ...