P2258 子矩阵(dp)
P2258 子矩阵
题目描述
给出如下定义:
- 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵。
例如,下面左图中选取第2、4行和第2、4、5列交叉位置的元素得到一个2*3的子矩阵如右图所示。
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
的其中一个2*3的子矩阵是
4 7 4
8 6 9
相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。
- 矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。
本题任务:给定一个n行m列的正整数矩阵,请你从这个矩阵中选出一个r行c列的子矩阵,使得这个子矩阵的分值最小,并输出这个分值。
(本题目为2014NOIP普及T4)
输入输出格式
输入格式:
第一行包含用空格隔开的四个整数n,m,r,c,意义如问题描述中所述,每两个整数之间用一个空格隔开。
接下来的n行,每行包含m个用空格隔开的整数,用来表示问题描述中那个n行m列的矩阵。
输出格式:
输出共1行,包含1个整数,表示满足题目描述的子矩阵的最小分值。
输入输出样例
5 5 2 3
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
6
7 7 3 3
7 7 7 6 2 10 5
5 8 8 2 1 6 2
2 9 5 5 6 1 7
7 9 3 6 1 7 8
1 9 1 4 7 8 8
10 5 9 1 1 8 10
1 3 1 5 4 8 6
16
说明
【输入输出样例1说明】
该矩阵中分值最小的2行3列的子矩阵由原矩阵的第4行、第5行与第1列、第3列、第4列交叉位置的元素组成,为
6 5 6
7 5 6
,其分值为
|6−5| + |5−6| + |7−5| + |5−6| + |6−7| + |5−5| + |6−6| =6。
【输入输出样例2说明】
该矩阵中分值最小的3行3列的子矩阵由原矩阵的第4行、第5行、第6行与第2列、第6列、第7列交叉位置的元素组成,选取的分值最小的子矩阵为
9 7 8 9 8 8 5 8 10
【数据说明】
对于50%的数据,1 ≤ n ≤ 12,1 ≤ m ≤ 12,矩阵中的每个元素1 ≤ a[i][j] ≤ 20;
对于100%的数据,1 ≤ n ≤ 16,1 ≤ m ≤ 16,矩阵中的每个元素1 ≤ a[i][j] ≤ 1,000,
1 ≤ r ≤ n,1 ≤ c ≤ m。
/*
好题
枚举完行后,由于行已确定,因此可以把所有行捆绑,视为一个整体。
设dp[i][k]表示前i列选了k列,并且第i列强制被选。
那么转移方程为:dp[i][k]=dp[j][k-1]+cost[j][i]+val[i]
其中j<i,cost[j][i]表示第i列与第j列相邻的花费,val[i]表示第i列内的花费。
答案即为max{dp[i][c]}。
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib> #define maxn 18 using namespace std;
int n,m,ans,num,r,c;
int a[maxn][maxn],dp[maxn][maxn];
int cost[maxn][maxn],val[maxn],R[maxn]; int DP()
{
int res=1e9;
for (int i=;i<=m;++i)//处理每一列的花费
{
val[i]=;
for (int j=;j<r;++j)
val[i]+=abs(a[R[j]][i]-a[R[j+]][i]);
}
for(int i=;i<=m;i++)//处理列与列之间的花费
for(int j=i+;j<=m;j++)
{
cost[i][j]=;
for(int k=;k<=r;k++)
cost[i][j]+=abs(a[R[k]][i]-a[R[k]][j]);
} dp[][]=;
for (int i=;i<=n;++i) dp[i][]=;
for(int i=;i<=m;i++)//注意状态的转移
for(int k=;k<=i&&k<=c;k++)
{
dp[i][k]=1e9;
for(int j=k-;j<i;j++)
{
dp[i][k]=min(dp[i][k],dp[j][k-]+cost[j][i]+val[i]);
}
}
for(int i=c;i<=m;i++)
res=min(res,dp[i][c]);
return res;
} void dfs(int u,int cnt)//枚举选哪些行
{
if(u>n)
{
if(cnt==r) ans=min(ans,DP());
return;
}
dfs(u+,cnt);
R[cnt+]=u;
dfs(u+,cnt+);
} int main()
{
scanf("%d%d%d%d",&n,&m,&r,&c);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&a[i][j]);
ans=1e9;
dfs(,);
printf("%d\n",ans);
}
P2258 子矩阵(dp)的更多相关文章
- P2258 子矩阵——搜索+dp
P2258 子矩阵 二进制枚举套二进制枚举能过多一半的点: 我们只需要优化一下第二个二进制枚举的部分: 首先我们先枚举选哪几行,再预处理我们需要的差值,上下,左右: sum_shang,sum_hen ...
- 洛谷 P2258 子矩阵 解题报告
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 2 . 4行和第 ...
- 洛谷P2258 子矩阵
P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...
- 【Luogu】P2258子矩阵(状态压缩,DP)
233今天蒟蒻我连文化课都没听光想着这个了 然后我调了一下午终于过了!!! 一看数据范围似乎是状压,然而216等于65536.开一个65536*65536的二维数组似乎不太现实. 所以Rqy在四月还是 ...
- BZOJ 1084: [SCOI2005]最大子矩阵 DP
1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...
- ZOJ1074 (最大和子矩阵 DP)
F - 最大子矩阵和 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Descri ...
- bzoj1084: [SCOI2005]最大子矩阵 dp
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 题解:m很小分类讨论,m==1时怎么搞都可以,m==2时,dp[i][j][k]表 ...
- P2258 子矩阵
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 222 . 444 行和第 222 ...
- 洛谷 P2258 子矩阵
题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...
随机推荐
- Gym - 101670E Forest Picture (CTU Open Contest 2017 模拟)
题目: https://cn.vjudge.net/problem/1451310/origin 题意&思路: 纯粹模拟. 大体题意是这样的: 1.有人要在一个10-9<=x<=1 ...
- ubuntu jdk和tomcat配置
先查看linux的版通过file /sbin/init命令,下载对应版本的jdk. 我的ubuntu是64位的(桌面系统),所以下载的是jdk-7u71-linux-x64.tar.gz 在home的 ...
- Springboot 添加数据源报错
报错信息如下: Caused by: org.springframework.beans.factory.NoSuchBeanDefinitionException: No qualifying be ...
- WordCountPro,完结撒花
WordCountPro,完结撒花 软测第四周作业 一.概述 该项目github地址如下: https://github.com/YuQiao0303/WordCountPro 该项目需求如下: ht ...
- Win32编程API 基础篇 -- 6.菜单和图标
菜单和按钮 例子:菜单1 本小节仅仅向你展示如果向你的窗口中加入一个基本的菜单,通常你会用到一个提前制作好的菜单资源,这会是一份.rc文件并且会被编译链接进你的.exe可执行程序中.这是具体的流程做法 ...
- AbstractList 重写 equals() 方法
题目内容 题目内容很简单,就是创建 ArrayList 和 Vector 集合,向两者添加相同内容的字符串,最后用 equals() 方法比较是否相等. 这里就考察了 "==" 和 ...
- Linux服务管理(Ubuntu服务管理工具sysv-rc-conf)(转)
Linux运行级别 Linux系统任何时候都运行在一个指定的运行级上,并且不同的运行级的程序和服务都不同,所要完成的工作和要达到的目的都不同,系统可以在这些运行级之间进行切换,以完成不同的工作. 运行 ...
- Openlayers3 计算地图上随意两点间的距离
相应的openlayers的版本号为3.7. 主要用的接口是ol.Sphere.haversineDistance([x1,y1],[x2,y2]): 4326坐标系中计算两点距离的方式为: var ...
- zTree初体验(一)——小试牛刀
zTree 是一个依靠 jQuery 实现的多功能 "树插件".优异的性能.灵活的配置.多种功能的组合是 zTree 最大长处. --zTree官网 zTree v3.0 将核心代 ...
- 2015南阳CCPC A - Secrete Master Plan A.
D. Duff in Beach Description Master Mind KongMing gave Fei Zhang a secrete master plan stashed in a ...