P2258 子矩阵

题目描述

给出如下定义:

  1. 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵。

例如,下面左图中选取第2、4行和第2、4、5列交叉位置的元素得到一个2*3的子矩阵如右图所示。

9 3 3 3 9

9 4 8 7 4

1 7 4 6 6

6 8 5 6 9

7 4 5 6 1

的其中一个2*3的子矩阵是

4 7 4

8 6 9

  1. 相邻的元素:矩阵中的某个元素与其上下左右四个元素(如果存在的话)是相邻的。

  2. 矩阵的分值:矩阵中每一对相邻元素之差的绝对值之和。

本题任务:给定一个n行m列的正整数矩阵,请你从这个矩阵中选出一个r行c列的子矩阵,使得这个子矩阵的分值最小,并输出这个分值。

(本题目为2014NOIP普及T4)

输入输出格式

输入格式:

第一行包含用空格隔开的四个整数n,m,r,c,意义如问题描述中所述,每两个整数之间用一个空格隔开。

接下来的n行,每行包含m个用空格隔开的整数,用来表示问题描述中那个n行m列的矩阵。

输出格式:

输出共1行,包含1个整数,表示满足题目描述的子矩阵的最小分值。

输入输出样例

输入样例#1:

5 5 2 3
9 3 3 3 9
9 4 8 7 4
1 7 4 6 6
6 8 5 6 9
7 4 5 6 1
输出样例#1:

6
输入样例#2:

7 7 3 3
7 7 7 6 2 10 5
5 8 8 2 1 6 2
2 9 5 5 6 1 7
7 9 3 6 1 7 8
1 9 1 4 7 8 8
10 5 9 1 1 8 10
1 3 1 5 4 8 6
输出样例#2:

16

说明

【输入输出样例1说明】

该矩阵中分值最小的2行3列的子矩阵由原矩阵的第4行、第5行与第1列、第3列、第4列交叉位置的元素组成,为

6 5 6

7 5 6

,其分值为

|6−5| + |5−6| + |7−5| + |5−6| + |6−7| + |5−5| + |6−6| =6。

【输入输出样例2说明】

该矩阵中分值最小的3行3列的子矩阵由原矩阵的第4行、第5行、第6行与第2列、第6列、第7列交叉位置的元素组成,选取的分值最小的子矩阵为

9 7 8 9 8 8 5 8 10

【数据说明】

对于50%的数据,1 ≤ n ≤ 12,1 ≤ m ≤ 12,矩阵中的每个元素1 ≤ a[i][j] ≤ 20;

对于100%的数据,1 ≤ n ≤ 16,1 ≤ m ≤ 16,矩阵中的每个元素1 ≤ a[i][j] ≤ 1,000,

1 ≤ r ≤ n,1 ≤ c ≤ m。

/*
好题
枚举完行后,由于行已确定,因此可以把所有行捆绑,视为一个整体。
设dp[i][k]表示前i列选了k列,并且第i列强制被选。
那么转移方程为:dp[i][k]=dp[j][k-1]+cost[j][i]+val[i]
其中j<i,cost[j][i]表示第i列与第j列相邻的花费,val[i]表示第i列内的花费。
答案即为max{dp[i][c]}。
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib> #define maxn 18 using namespace std;
int n,m,ans,num,r,c;
int a[maxn][maxn],dp[maxn][maxn];
int cost[maxn][maxn],val[maxn],R[maxn]; int DP()
{
int res=1e9;
for (int i=;i<=m;++i)//处理每一列的花费
{
val[i]=;
for (int j=;j<r;++j)
val[i]+=abs(a[R[j]][i]-a[R[j+]][i]);
}
for(int i=;i<=m;i++)//处理列与列之间的花费
for(int j=i+;j<=m;j++)
{
cost[i][j]=;
for(int k=;k<=r;k++)
cost[i][j]+=abs(a[R[k]][i]-a[R[k]][j]);
} dp[][]=;
for (int i=;i<=n;++i) dp[i][]=;
for(int i=;i<=m;i++)//注意状态的转移
for(int k=;k<=i&&k<=c;k++)
{
dp[i][k]=1e9;
for(int j=k-;j<i;j++)
{
dp[i][k]=min(dp[i][k],dp[j][k-]+cost[j][i]+val[i]);
}
}
for(int i=c;i<=m;i++)
res=min(res,dp[i][c]);
return res;
} void dfs(int u,int cnt)//枚举选哪些行
{
if(u>n)
{
if(cnt==r) ans=min(ans,DP());
return;
}
dfs(u+,cnt);
R[cnt+]=u;
dfs(u+,cnt+);
} int main()
{
scanf("%d%d%d%d",&n,&m,&r,&c);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&a[i][j]);
ans=1e9;
dfs(,);
printf("%d\n",ans);
}

P2258 子矩阵(dp)的更多相关文章

  1. P2258 子矩阵——搜索+dp

    P2258 子矩阵 二进制枚举套二进制枚举能过多一半的点: 我们只需要优化一下第二个二进制枚举的部分: 首先我们先枚举选哪几行,再预处理我们需要的差值,上下,左右: sum_shang,sum_hen ...

  2. 洛谷 P2258 子矩阵 解题报告

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 2 . 4行和第 ...

  3. 洛谷P2258 子矩阵

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...

  4. 【Luogu】P2258子矩阵(状态压缩,DP)

    233今天蒟蒻我连文化课都没听光想着这个了 然后我调了一下午终于过了!!! 一看数据范围似乎是状压,然而216等于65536.开一个65536*65536的二维数组似乎不太现实. 所以Rqy在四月还是 ...

  5. BZOJ 1084: [SCOI2005]最大子矩阵 DP

    1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...

  6. ZOJ1074 (最大和子矩阵 DP)

    F - 最大子矩阵和 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u   Descri ...

  7. bzoj1084: [SCOI2005]最大子矩阵 dp

    这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 题解:m很小分类讨论,m==1时怎么搞都可以,m==2时,dp[i][j][k]表 ...

  8. P2258 子矩阵

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 222 . 444 行和第 222 ...

  9. 洛谷 P2258 子矩阵

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

随机推荐

  1. 第一章 React新的前端思维方式

    ---恢复内容开始--- 第一章 React新的前端思维方式 1.1 初始化一个React项目 1.安装create-react-app npm install --global create-rea ...

  2. [USACO] 奶牛零食 Treats for the Cows

    题目描述 约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售 ...

  3. <MySQL>入门六 变量

    /* 变量 系统变量: 全局变量 会话变量 自定义变量 用户变量 局部变量 */ -- ------------系统变量-------------------- /* 变量由系统提供,不是用户定义,属 ...

  4. java导出word的6种方式(转发)

    来自: http://www.cnblogs.com/lcngu/p/5247179.html 最近做的项目,需要将一些信息导出到word中.在网上找了好多解决方案,现在将这几天的总结分享一下. 目前 ...

  5. software collection

    software software Table of Contents 1. Privacy 2. GFW 2.1. google search 2.2. 修改 DNS 服务器 2.2.1. 修改ip ...

  6. PAT 1143 Lowest Common Ancestor

    The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...

  7. 【OpenCV, MFC, DIP】向图像中加入各种噪声

    1.椒盐噪声 Mat dstImage = srcImage.clone(); ; k < n; k++) { //随机取值行列 int i = rand() % dstImage.rows; ...

  8. Ajax_数据格式_HTML

    [数据格式提要] 1.在服务器端Ajax是一门与语言无关的技术.在业务逻辑层使用何种服务器端语言都可以. 2.从服务器端接收数据的时候,那些数据必须以浏览器能够理解的格式来发送.服务器端的编程语言只能 ...

  9. iframe 与frameset

    frameset 元素可定义一个框架集.它被用来组织多个窗口(框架).每个框架存有独立的文档.在其最简单的应用中,frameset 元素仅仅会规定在框架集中存在多少列或多少行.您必须使用 cols 或 ...

  10. Codeforces Round #228 (Div. 2)

    做codeforces以来题目最水的一次 A题: Fox and Number Game 题意:就是用一堆数字来回减,直到减到最小值为止,再把所有最小值加,求这个值 sol: 简单数论题目,直接求所有 ...