源码请到:自然语言处理练习: 学习自然语言处理时候写的一些代码 (gitee.com)

数据来源:

搜狗新闻语料库 由于链接失效,现在使用百度网盘分享

链接:https://pan.baidu.com/s/1RTx2k7V3Ujgg9-Rv8I8IRA?pwd=ujn3
提取码:ujn3

停用词 来源于网络

链接:https://pan.baidu.com/s/1ePrf4_gWx8_pTn6PEjTtCw?pwd=5jov
提取码:5jov

字样式文件 来源于网络

链接:https://pan.baidu.com/s/1uVreJY-MKhz1HXzAw5e4VQ?pwd=8ill
提取码:8ill

一、tf-idf简介

TF = 某词在文章中出现的次数/该文章中出现最多词出现的次数

IDF = log(文章总数/包含该词的文章数+1)

TF-IDF = TF * IDF

二、加载数据集

# 载入数据集
df_news = pd.read_table('./data/val.txt', names=['category', 'theme', 'URL', 'content'], encoding='utf-8')
df_news = df_news.dropna()
print(df_news.head())
print(df_news.shape)

可以看到有5000行4列的数据,其中第一列可以作为新闻分类的标签,最后一列为新闻内容

三、分词

首先将数据转换为list格式

# 转换为list格式
content = df_news.content.values.tolist()
print(content[1000])

将最后一列数据摘出来转换成了一个字符串列表,就可以进行分词操作

# 分词
content_S = []
for line in content:
current_segment = jieba.lcut(line)
if len(current_segment) > 1 and current_segment != '\r\n':
content_S.append(current_segment)
print(content_S[1000])
df_content = pd.DataFrame({'content_S': content_S})
print(df_content.head())

四、去掉停用词

可以看出上面还有许多没有价值的词作干扰,所以我们加载停用词库并且去掉停用词

# 加载停用词
stopwords = pd.read_csv('./data/stopwords.txt', index_col=False, sep='\t', quoting=3, names=['stopword'],
encoding='utf-8')
print(stopwords.head(20)) # 去掉停用词
def drop_stopwords(contents, stopwords):
contents_clean = []
all_words = []
for line in contents:
line_clean = []
for word in line:
if word in stopwords:
continue
line_clean.append(word)
all_words.append(str(word))
contents_clean.append(line_clean)
return contents_clean, all_words contents = df_content.content_S.values.tolist()
stopwords = stopwords.stopword.values.tolist()
contents_clean, all_words = drop_stopwords(contents, stopwords)
df_content = pd.DataFrame({'contents_clean': contents_clean})
print(df_content.head())
df_all_words = pd.DataFrame({'all_words': all_words})
print(df_all_words.head())

五、计算词频

# 计算词频
words_count = df_all_words.groupby(by=['all_words'])['all_words'].agg(count='count')
words_count = words_count.reset_index().sort_values(by=['count'], ascending=False)
print(words_count.head())

六、绘制词云

七、使用tf-idf提取关键词

# tf-idf
index = 1000
print(df_news['content'][index])
content_S_str = ''.join(content_S[index])
print(' '.join(jieba.analyse.extract_tags(content_S_str, topK=5, withWeight=False)))

八、使用主题模型提取关键词

# LDA
dictionary = corpora.Dictionary(contents_clean)
corpus = [dictionary.doc2bow(sentence) for sentence in contents_clean]
lda = gensim.models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary, num_topics=20)
print(lda.print_topic(1, topn=5))
for topic in lda.print_topics(num_topics=20, num_words=5):
print(topic[1])

可以看出第一类词的成分权重

这是所有类型的词成分权重

九、使用贝叶斯算法进行分类

# 贝叶斯算法进行分类
df_train = pd.DataFrame({'contents_clean': contents_clean, 'label': df_news['category']})
print(df_train.tail())
print(df_train.label.unique())
label_mapping = {'汽车': 1, '财经': 2, '科技': 3, '健康': 4, '体育': 5, '教育': 6, '文化': 7, '军事': 8, '娱乐': 9,
'时尚': 0}
df_train['label'] = df_train['label'].map(label_mapping)
print(df_train.head())
x_train, x_test, y_train, y_test = train_test_split(df_train['contents_clean'].values, df_train['label'].values)
print(x_train[0][1]) words = []
for line_index in range(len(x_train)):
words.append(' '.join(x_train[line_index]))
print(words[0])
print(len(words))
# 计算词频构造向量
vec = CountVectorizer(analyzer='word', max_features=4000, lowercase=False)
vec.fit(words)
classifier = MultinomialNB()
classifier.fit(vec.transform(words), y_train)
test_words = []
for line_index in range(len(x_test)):
test_words.append(' '.join(x_test[line_index]))
print(test_words[0])
print(len(test_words))
print(classifier.score(vec.transform(test_words), y_test))
# tf-idf构造词向量
vec2 = TfidfVectorizer(analyzer='word', max_features=4000, lowercase=False)
vec2.fit(words)
classifier = MultinomialNB()
classifier.fit(vec2.transform(words), y_train)
print(classifier.score(vec2.transform(test_words), y_test))
# 词频构造多维向量形式构造词向量
vec3 = CountVectorizer(analyzer='word', max_features=4000, lowercase=False, ngram_range=(1, 2))
vec3.fit(words)
classifier = MultinomialNB()
classifier.fit(vec3.transform(words), y_train)
print(classifier.score(vec3.transform(test_words), y_test))
# tfidf构造多维向量形式构造词向量
vec4 = TfidfVectorizer(analyzer='word', max_features=4000, lowercase=False, ngram_range=(1, 2))
vec4.fit(words)
classifier = MultinomialNB()
classifier.fit(vec4.transform(words), y_train)
print(classifier.score(vec4.transform(test_words), y_test))

可以看出不同方法构成词向量对结果产生了影响,使用tf-idf方法构建词向量比单纯使用词频构建词向量准确率高一些,将词向量扩充多维比不扩充准确率稍微高一些

nlp入门(四)新闻分类实验的更多相关文章

  1. 阿里天池 NLP 入门赛 TextCNN 方案代码详细注释和流程讲解

    thumbnail: https://image.zhangxiann.com/jung-ho-park-HbnqEhMBpPM-unsplash.jpg toc: true date: 2020/8 ...

  2. 2017年 实验四 B2C模拟实验

    实验四 B2C模拟实验                [实验目的] 掌握网上购物的基本流程和B2C平台的运营 [实验条件] ⑴.个人计算机一台 ⑵.计算机通过局域网形式接入互联网. (3).奥派电子商 ...

  3. ArcGIS10从入门到精通系列实验图文教程(附配套实验数据持续更新)

    @ 目录 1. 专栏简介 2. 专栏地址 3. 专栏目录 1. 专栏简介 本教程<ArcGIS从入门到精通系列实验教程>内容包括:ArcGIS平台简介.ArcGIS应用基础.空间数据的采集 ...

  4. NLP入门(五)用深度学习实现命名实体识别(NER)

    前言   在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具--NLTK和Stanford NLP.在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现N ...

  5. 20165230 《Java程序设计》实验四 Android程序设计实验报告

    20165230 <Java程序设计>实验四 Android程序设计实验报告 一.实验报告封面 课程:Java程序设计 班级:1652班 姓名:田坤烨 学号:20165230 成绩: 指导 ...

  6. Python爬虫入门四之Urllib库的高级用法

    1.设置Headers 有些网站不会同意程序直接用上面的方式进行访问,如果识别有问题,那么站点根本不会响应,所以为了完全模拟浏览器的工作,我们需要设置一些Headers 的属性. 首先,打开我们的浏览 ...

  7. 转 Python爬虫入门四之Urllib库的高级用法

    静觅 » Python爬虫入门四之Urllib库的高级用法 1.设置Headers 有些网站不会同意程序直接用上面的方式进行访问,如果识别有问题,那么站点根本不会响应,所以为了完全模拟浏览器的工作,我 ...

  8. 2016年 实验四  B2B模拟实验

    实验四  B2B模拟实验 [实验目的] ⑴.掌握B2B中供应商的供求信息发布.阿里商铺开设和订单交易等过程. ⑵.掌握B2B中采购商的采购信息的发布.交易洽谈.网上支付和收货等过程. [实验条件] ⑴ ...

  9. 【原创】NIO框架入门(四):Android与MINA2、Netty4的跨平台UDP双向通信实战

    概述 本文演示的是一个Android客户端程序,通过UDP协议与两个典型的NIO框架服务端,实现跨平台双向通信的完整Demo. 当前由于NIO框架的流行,使得开发大并发.高性能的互联网服务端成为可能. ...

  10. python学习笔记--Django入门四 管理站点--二

    接上一节  python学习笔记--Django入门四 管理站点 设置字段可选 编辑Book模块在email字段上加上blank=True,指定email字段为可选,代码如下: class Autho ...

随机推荐

  1. 2021-04-07:给定一个非负数组arr,长度为N,那么有N-1种方案可以把arr切成左右两部分,每一种方案都有,min{左部分累加和,右部分累加和},求这么多方案中,min{左部分累加和,右部分累加和}的最大值是多少? 整个过程要求时间复杂度O(N)。

    2021-04-07:给定一个非负数组arr,长度为N,那么有N-1种方案可以把arr切成左右两部分,每一种方案都有,min{左部分累加和,右部分累加和},求这么多方案中,min{左部分累加和,右部分 ...

  2. Element Cascader 级联选择器去除空叶子节点

    此处以后端获取部门级联List为例 以下为数据结构 { data: { children: [ 0:{childre:[ 0:{}, 1:{} ]}, 1:{}, 2:{}, 3:{}, 4:{}, ...

  3. phpstudy-sqlilabs-less-1

    题目:POST - Error Based - Double quotes- String - with twist 基于错误的双引号post型字符变形的注入 先抓下包,拿到格式 uname=1#&a ...

  4. 基于.NetCore+React单点登录系统

    对于有多个应用系统的企业来说,每一个应用系统都有自己的用户体系,这就造成用户在切换不同应用系统时,就要多次输入账号密码,导致体验非常不好,也造成使用上非常不便. 针对这个问题,我们就可以采用单点登录的 ...

  5. 近期SQL优化实战分享

    分享一下本周SQL优化的两个场景. 如果能对读者有一定的启发,共同探讨,不胜荣幸. 版本信息:mysql,5.7.19 引擎: innodb 场景1 我们有一张常口表,里面的数据由各种数据源合并而来, ...

  6. MVCC-数据库

    参考地址:看一遍就理解:MVCC原理详解 - 掘金 (juejin.cn) 1. 相关数据库知识点回顾 1.1 什么是数据库事务,为什么要有事务 事务,由一个有限的数据库操作序列构成,这些操作要么全部 ...

  7. 聊聊Zookeeper的Session会话超时重连

    概述 简单地说,ZooKeeper的连接与会话就是客户端通过实例化ZooKeeper对象来实现客户端与服务器创建并保持TCP连接的过程.本质上,Session就是一个TCP 长连接. 会话 Sessi ...

  8. 洛谷 P5979 [PA2014] Druzyny

    简要题意 有 \(n\) 个人,把他们划分成尽可能多的区间,其中第 \(i\) 个人要求它所在的区间长度大于等于 \(c_i\),小于等于 \(d_i\),求最多的区间数量以及如此划分的方案数. 数据 ...

  9. FPGA加速技术在游戏和娱乐系统中的应用:实现高效的游戏和娱乐系统

    目录 1. 引言 2. 技术原理及概念 3. 实现步骤与流程 4. 应用示例与代码实现讲解 <35. FPGA加速技术在游戏和娱乐系统中的应用:实现高效的游戏和娱乐系统>这篇文章是一篇针对 ...

  10. BeanDefinitionStoreException: Failed to read candidate component class

    ssm 整合时出现问题 org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate ...