tf程序中,系统会自动创建并维护一个默认的计算图,计算图可以理解为神经网络(Neural Network)结构的程序化描述。如果不显式指定所归属的计算图,则所有的tensor和Operation都是在默认计算图中定义的,使用tf.get_default_graph()函数可以获取当前默认的计算图句柄。

# -*- coding: utf-8 -*-)
import tensorflow as tf a=tf.constant([1.0,2.0])
b=tf.constant([1.0,2.0]) result = a+b print(a.graph is tf.get_default_graph()) # 输出为True,表示tensor a 是在默认的计算图中定义的
print(result.graph is tf.get_default_graph()) # 输出为True, 表示 Operation result 是在默认的计算图中定义的
print 'a.graph = {0}'.format(a.graph)
print 'default graph = {0}'.format(tf.get_default_graph())

输出:

True
True
a.graph = <tensorflow.python.framework.ops.Graph object at 0x7f0480c9ca90>
default graph = <tensorflow.python.framework.ops.Graph object at 0x7f0480c9ca90>

tf中可以定义多个计算图,不同计算图上的张量和运算是相互独立的,不会共享。计算图可以用来隔离张量和计算,同时提供了管理张量和计算的机制。计算图可以通过Graph.device函数来指定运行计算的设备,为TensorFlow充分利用GPU/CPU提供了机制。

  1. 使用 g = tf.Graph()函数创建新的计算图;
  2. 在with g.as_default():语句下定义属于计算图g的张量和操作
  3. 在with tf.Session()中通过参数 graph = xxx指定当前会话所运行的计算图;
  4. 如果没有显式指定张量和操作所属的计算图,则这些张量和操作属于默认计算图;
  5. 一个图可以在多个sess中运行,一个sess也能运行多个图

创建多个计算图:

# -*- coding: utf-8 -*-)
import tensorflow as tf # 在系统默认计算图上创建张量和操作
a=tf.constant([1.0,2.0])
b=tf.constant([2.0,1.0])
result = a+b # 定义两个计算图
g1=tf.Graph()
g2=tf.Graph() # 在计算图g1中定义张量和操作
with g1.as_default():
a = tf.constant([1.0, 1.0])
b = tf.constant([1.0, 1.0])
result1 = a + b with g2.as_default():
a = tf.constant([2.0, 2.0])
b = tf.constant([2.0, 2.0])
result2 = a + b # 在g1计算图上创建会话
with tf.Session(graph=g1) as sess:
out = sess.run(result1)
print 'with graph g1, result: {0}'.format(out) with tf.Session(graph=g2) as sess:
out = sess.run(result2)
print 'with graph g2, result: {0}'.format(out) # 在默认计算图上创建会话
with tf.Session(graph=tf.get_default_graph()) as sess:
out = sess.run(result)
print 'with graph default, result: {0}'.format(out) print g1.version # 返回计算图中操作的个数

输出:

with graph g1, result: [ 2.  2.]
with graph g2, result: [ 4. 4.]
with graph default, result: [ 3. 3.]
3

tensorflow中创建多个计算图(Graph)的更多相关文章

  1. Tensorflow中的图(tf.Graph)和会话(tf.Session)详解

    Tensorflow中的图(tf.Graph)和会话(tf.Session) Tensorflow编程系统 Tensorflow工具或者说深度学习本身就是一个连贯紧密的系统.一般的系统是一个自治独立的 ...

  2. tensorflow中有向图(计算图、Graph)、上下文环境(Session)和执行流程

    计算图(Graph) Tensorflow是基于图(Graph)的计算框架,图的节点由事先定义的运算(操作.Operation)构成,图的各个节点之间由张量(tensor)来链接,Tensorflow ...

  3. TensorFlow 中的张量,图,会话

    tensor的含义是张量,张量是什么,听起来很高深的样子,其实我们对于张量一点都不陌生,因为像标量,向量,矩阵这些都可以被认为是特殊的张量.如下图所示: 在TensorFlow中,tensor实际上就 ...

  4. tensorflow中slim模块api介绍

    tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35   http://blog.csdn.net/guvcolie/article/details/77686 ...

  5. TensorFlow中的设备管理——Device的创建与注册机制

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 作为一款优秀的异构深度学习算法框架,TensorFlow可以在多种设备上运行算 ...

  6. TensorFlow中的Session、Graph、operation、tensor

    TensorFlow中的Session.Graph.operation.tensor

  7. TensorFlow中的Placement启发式算法模块——Placer

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 受限于单个Device的计算能力和存储大小,许多深度学习模型都有着使用模型分片 ...

  8. Tensorflow中的run()函数

    1 run()函数存在的意义 run()函数可以让代码变得更加简洁,在搭建神经网络(一)中,经历了数据集准备.前向传播过程设计.损失函数及反向传播过程设计等三个过程,形成计算网络,再通过会话tf.Se ...

  9. [翻译] Tensorflow中name scope和variable scope的区别是什么

    翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-s ...

随机推荐

  1. Django——缓存机制

    1.缓存介绍 (1)概论 在动态网站中,用户所有的请求,服务器都会去数据库中进行相应的增,删,查,改,渲染模板,执行业务逻辑,最后生成用户看到的页面. 当一个网站的用户访问量很大的时候,每一次的的后台 ...

  2. 极速Node.js:来自LinkedIn的10个性能提升秘籍

    from:http://faylai.iteye.com/blog/1293194 1.避免使用同步的方法 nodejs 是基于单线程.为了让单线程能够处理高并发的请求,我们尽量要避免让线程等待,阻塞 ...

  3. CSS清除浮动使父级元素展开的三个方法

    点评:一个没有设置高度的容器div内如果存在浮动元素(即使用了属性float:left或者float:right),那么该父级元素会无法展开,下面举个例子为大家详细介绍下,希望对大家有所帮助 一个没有 ...

  4. DD DT DL标签

    我们平时常用的是< ul>< li>标签,不过dd.dt标签也蛮不错,特别是发布程序的时候功能模块列表什么的可以使用它来排版. < dl>< /dl>& ...

  5. cocos2d关于glew32.lib错误(转)

    应项目需要使用cocos2d-x开发,又要学习新东东了.·cocos2d-x 是一个支持多平台的 2D 手机游戏引擎,用C++重写cocos2d-iphone引擎的一个开源项目,想了解更多的童鞋美去百 ...

  6. Qt5.2.1交叉编译,带tslib插件

    一: 源码下载地址: 1.1: 平台: 主机:ubuntu 14.04 开发板: cpu arm-cortex-a8,故而我在配置我的qmake.conf的时候填写的为armV7-a QT版本: qt ...

  7. Adding Flexcan driver support on Kernel

    Adding Flexcan driver support on Kernel On kernel menuconfig, add the following items: [*] Networkin ...

  8. 嵌入式boa服务器移植

    开发板:EDUKIT-III实验箱,S3C2410+LINUX2.4,实验箱随箱光盘提供的Zimage,nor flash启动. 主机:ubnutn10.4LTS,arm-linux-gcc 2.95 ...

  9. KVC和KVO的理解(底层实现原理)

    1.KVC,即是指 NSKeyValueCoding,一个非正式的Protocol,提供一种机制来间接访问对象的属性.而不是通过调用Setter.Getter方法访问.KVO 就是基于 KVC 实现的 ...

  10. OC_链表实现队列

    @interface Node : NSObject @property(nonatomic,strong)NSString *value; @property(nonatomic,strong)No ...