(2018武汉大学自招)设$x,y,z\ge0,xy+yz+zx=1$证明:$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge \dfrac{5}{2}$

证明:
\begin{align*}
\textbf{原式} & \iff 2\sum{(y+z)(z+x)}-5\prod(x+y)\ge0\\
& \iff 2\sum{z^2+(x+y)z+xy}-5\left((x+y+z)(xy+yz+zx)-xyz\right)\ge0\\
& \iff 2(x+y+z)^2+2-5(x+y+z)+5xyz\ge0
\end{align*}
记$a=x+y+z,b=xy+yz+zx,c=xyz$则只需证明:$2a^2-5a+5c+2\ge0$
若$a>2$则$2a^2-5a+5c+2\ge2a^2-5a+2=(2a-1)(a-2)\ge0$成立
若$a\le2$则由舒尔不等式:
$\sum{x(x-y)(x-z)=(\sum x)^3-4\sum{x}\sum{xy}+9xyz=a^3-4ab+9c=a^3-4a+9c\ge0}$ 得
$c\ge\dfrac{-a^3+4a}{9}$
故$2a^2-5a+5c+2\ge\dfrac{-5a^3+18a^2-25a+18}{9}\ge0$(由单调递减易得)当$(x,y,z)=(1,1,0)$时取到等号.

事实上还有如下天书上的证明:

(Chen  Ji )

事实上还可证明最大值:
$x,y,z\ge0,xy+yz+zx=1$时$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\le\sqrt{\dfrac{27}{4}}$
提示:利用均值:$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\le\sqrt{3\sum\dfrac{1}{(x+y)^2}}\le\sqrt{\dfrac{27}{4}}$
最后一步是著名的伊朗96不等式.
最后给一个利用上面方法的练习:(2011年全国联赛B卷二试第三题)

已知$a,b,c\ge1$且满足:$abc+2a^2+2b^2+2c^2+ca-cb-4a+4b-c=28,$求$a+b+c$的最大值.

MT【200】一道自招的不等式的更多相关文章

  1. MT【98】三元对称不等式

    评:这是一道浙江省省赛题,这里利用对称性,设$x\le y\le z$从而解决了问题.值得注意的是此处三元轮换对称正好也是完全对称,但如果变成一般的$n\ge4$元对称问题时,就不能设大小关系.事实上 ...

  2. MT【327】两道不等式题

    当$x,y\ge0,x+y=2$时求下面式子的最小值:1)$x+\sqrt{x^2-2x+y^2+1}$2)$\dfrac{1}{5}x+\sqrt{x^2-2x+y^2+1}$ 解:1)$P(x,y ...

  3. MT【18】幂平均不等式的证明

    评:证明时对求导要求较高,利用这个观点,对平时熟悉的调和平均,几何平均,算术平均,平方平均有了更深 刻的认识.

  4. AtCoder Grand Contest 017 (VP)

    contest link Official Editorial 比赛体验--之前做题的时候感觉 AtCoder 挺快的,现在打了VP之后发现还是会挂的--而且不是加载缓慢或者载不出来,直接给你一个无法 ...

  5. CF651B-Beautiful Paintings

    B. Beautiful Paintings time limit per test 1 second memory limit per test 256 megabytes input standa ...

  6. P2764 最小路径覆盖问题 题解(二分图)

    建图思路很明确,拆点跑最大匹配,但这明显是个二分图的题题解居然只有一篇匈牙利算法. 发一种和之前那篇匈牙利思路略有不同的题解. 本题的难点就是如何输出,那么我们不妨在建图的时候加入一个原则,即:连边时 ...

  7. MT【57】2017联赛一试解答倒数第二题:一道不等式的最值

    注:康拓诺维奇不等式的应用

  8. MT【274】一道漂亮的不等式题

    已知$x_1^2+x_2^2+\cdots+x_6^2=6,x_1+x_2+\cdots+x_6=0,$证明:$x_1x_2\cdots x_6\le\dfrac{1}{2}$ 解答:显然只需考虑2个 ...

  9. MT【230】一道代数不等式

    设$a,b,c>0,$满足$a+b+c\le abc$证明:$\dfrac{1}{\sqrt{1+a^2}}+\dfrac{1}{\sqrt{1+b^2}}+\dfrac{1}{\sqrt{1+ ...

随机推荐

  1. ABAP error:CONVT_NO_NUMBER

    今天写了个接口,传入数据到SAP,结果接收后在报表展示时直接报错. 检查后发现数据转换出错,接收到的数据格式混乱. 最后检查了所有地方发现,源系统传入的数据长度为9个字节,但是自己的接收程序,定义数据 ...

  2. 20155233 《网络对抗》Exp2 后门原理与实践

    实验过程 1.Win获得Linux Shell windows:使用ipconfig指令查看本机ip: windows:使用ncat命令打开监听: Linux反弹连接win: 输入 nc window ...

  3. 20155306 白皎 《网络攻防》 EXP7 网络欺诈技术防范

    20155306 白皎 <网络攻防> EXP7 网络欺诈技术防范 问题回答 (1)通常在什么场景下容易受到DNS spoof攻击 局域网内的攻击以及连接公众场所的共享wifi (2)在日常 ...

  4. 实验的方差分析(R语言)

    实验设计与数据处理(大数据分析B中也用到F分布,故总结一下,加深印象)第3课小结--实验的方差分析(one-way analysis of variance) 概述 实验结果\(S\)受多个因素\(A ...

  5. WPF编程,窗体最大化、最小化、关闭按钮功能的禁用

    原文:WPF编程,窗体最大化.最小化.关闭按钮功能的禁用 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/detail ...

  6. MIT一牛人对数学在机器学习中的作用给的评述

    MIT一牛人对数学在机器学习中的作用给的评述 转载自http://my.oschina.net/feedao/blog/52252,不过这个链接也是转载的,出处已经无从考证了.   感觉数学似乎总是不 ...

  7. [C/C++标准库]_[初级]_[转换UTC时间到local本地时间]

    场景 1.如果有面向全球用户的网站, 一般在存储时间数据时存储的是UTC格式的时间, 这样时间是统一的, 并可以根据当地时区来进行准确的转换. 2.存储本地时间的问题就在于如果换了时区, 那么显示的时 ...

  8. effective c++ 笔记 (18-22)

    //---------------------------15/04/06---------------------------- //#18 让接口容易被正确使用,不易被误用 { //  1:为了防 ...

  9. Hexo站点之域名配置【2】

    该系列博客列表请访问:http://www.cnblogs.com/penglei-it/category/934299.html 摘要 因为Hexo个人博客是托管在github之上,每次访问都要使用 ...

  10. 虚拟机console最小化安装操作系统图文

    1. 概述2. 安装操作系统2.1 交互界面2.2 内核镜像解压等初始化2.3 磁盘发现2.4 硬件支持告警3. 开始安装3.1 语言选择3.2 键盘选择3.3 服务器类型3.4 配置主机名3.5 时 ...