法一:

匹配问题,网络流!

最大费用最大流,S到A,B流a/b费0,A,B到i流1费p[i]/u[i],同时选择再减p[i]*u[i]?

连二次!所以i到T流1费0流1费-p[i]*u[i]

最大流由于ab都选择完最优

最大费用,所以不会第一次走-p[i]*u[i]

法二:

DP怎么写?

dp[i][j][k]

优化?

一定选择a、b个!

恰好选择a、b个?

WQS二分!

一定是满足凸函数的性质的

所以选择若干个a,代价ca,求dp[i][b]

再次WQS二分!

所以选择若干个a,b,代价ca,cb,求dp[i]

O(nlog^2n)

卡精度

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define num (ch^'0')
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=num;isdigit(ch=getchar());x=x*+num);
(fl==true)&&(x=-x);
}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');} namespace Miracle{
const int N=;
const double eps=1e-;
int numa[N],numb[N];
int n,a,b;
double p[N],u[N];
double dp[N];
void wrk(double ca,double cb){
for(reg i=;i<=n;++i){
dp[i]=dp[i-];numa[i]=numa[i-];numb[i]=numb[i-];
if(dp[i]<dp[i-]+p[i]-ca-eps){
dp[i]=dp[i-]+p[i]-ca;numa[i]=numa[i-]+;numb[i]=numb[i-];
}
if(dp[i]<dp[i-]+u[i]-cb-eps){
dp[i]=dp[i-]+u[i]-cb;numb[i]=numb[i-]+;numa[i]=numa[i-];
}
if(dp[i]<dp[i-]+u[i]+p[i]-p[i]*u[i]-ca-cb-eps){
dp[i]=dp[i-]+u[i]+p[i]-p[i]*u[i]-ca-cb;numb[i]=numb[i-]+;numa[i]=numa[i-]+;
}
}
}
double che(double ca){
double l=,r=;
for(reg i=;i<=;++i){
double mid=(l+r)/;
wrk(ca,mid);
if(numb[n]>b){
l=mid;
}else{
r=mid;
}
}
return (l+r)/;
}
int main(){
rd(n);rd(a);rd(b);
for(reg i=;i<=n;++i){
scanf("%lf",&p[i]);
}
for(reg i=;i<=n;++i){
scanf("%lf",&u[i]);
}
double l=,r=,ka,kb;
for(reg i=;i<=;++i){
double mid=(l+r)/;
kb=che(mid);
if(numa[n]>a){
l=mid;
}else{
r=mid;
}
}
ka=(l+r)/;
wrk(ka,kb);
printf("%.10lf",dp[n]+ka*a+kb*b);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/3/22 20:22:58
*/

巧妙之处:虽然不是恰好选择,但是选择a,b个一定是最优的!(就算是区间,也可以区间WQS二分)

CF739E Gosha is hunting的更多相关文章

  1. CF739E Gosha is hunting 【WQS二分 + 期望】

    题目链接 CF739E 题解 抓住个数的期望即为概率之和 使用\(A\)的期望为\(p[i]\) 使用\(B\)的期望为\(u[i]\) 都使用的期望为\(p[i] + u[i] - u[i]p[i] ...

  2. CF739E Gosha is hunting DP+wqs二分

    我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的 ...

  3. CF739E Gosha is hunting(费用流,期望)

    根据期望的线性性答案就是捕捉每一只精灵的概率之和. 捕捉一只精灵的方案如下: 1.使用一个\(A\)精灵球,贡献为\(A[i]\) 2.使用一个\(B\)精灵球,贡献为\(B[i]\) 3.使用一个\ ...

  4. HZOJ 赤(CF739E Gosha is hunting)

    本来没有打算写题解的,时间有点紧.但是这个wqs二分看了好久才明白还是写点东西吧. 题解就直接粘dg的了: 赤(red) 本题来自codeforces 739E,加大了数据范围. 首先对一只猫不会扔两 ...

  5. CF739E Gosha is hunting(费用流/凸优化dp)

    纪念合格考爆炸. 其实这个题之前就写过博客了,qwq但是不小心弄丢了,所以今天来补一下. 首先,一看到球的个数的限制,不难相当用网络流的流量来限制每个球使用的数量. 由于涉及到最大化期望,所以要使用最 ...

  6. 【CF739E】Gosha is hunting 贪心

    [CF739E]Gosha is hunting 题意:有n个小精灵,你有a个普通球和b个超级球,用普通球抓住第i只小精灵的概率为$A_i$,用超级球抓住第i只小精灵的概率为$u_i$.你必须一开始就 ...

  7. 【CF739E】Gosha is hunting(动态规划,凸优化)

    [CF739E]Gosha is hunting(动态规划,凸优化) 题面 洛谷 CF 题解 一个\(O(n^3)\)的\(dp\)很容易写出来. 我们设\(f[i][a][b]\)表示前\(i\)个 ...

  8. 【CF739E】Gosha is hunting(WQS二分套WQS二分)

    点此看题面 大致题意: 你有两种捕捉球(分别为\(A\)个和\(B\)个),要捕捉\(n\)个神奇宝贝,第\(i\)个神奇宝贝被第一种球捕捉的概率是\(s1_i\),被第二种球捕捉的概率是\(s2_i ...

  9. Codeforces739E Gosha is hunting

    题意:现在有n个精灵,两种精灵球各m1和m2个,每个精灵单独使用第一种精灵球有pi的概率被捕获,单独使用第二种精灵球有ui的概率被捕获,同时使用有1-(1-pi)*(1-ui)的概率被捕获.一种精灵球 ...

随机推荐

  1. ubuntu18.04 安装 php7.2

    sudo apt-get install software-properties-common python-software-properties sudo add-apt-repository p ...

  2. export default用法

    // test.js export default { name: 'zs', age: 20 } 或是 // test.js var info = { name: 'zs', age: 20 } e ...

  3. eclipse中将Java项目转换为JavaWeb项目

    eclipse导入一些war项目后,会以java项目形式存在,因此我们需要将java项目转换成web项目,不然项目也许会报错. 1.右键已经导入的项目,选择properties. 2.选中projec ...

  4. How to create DMG on macOS

    hdiutil create -srcfolder /users/test1/ -volname test1 /users/test/test1.dmg

  5. Data Science With R In Visual Studio

    R Projects Similar to Python, when we installed the data science tools we get an “R” section in our ...

  6. java web 开发入门 --- tomcat/servlet/jsp

    在做java web 开发时,要先安装tomcat.它是一个web服务器,也叫web容器,我们把写好的jsp, html页面放到它里面,然后启动它,就可以用浏览器访问这些页面,地址栏中输入localh ...

  7. poj2739(尺取法+质数筛)

    题意:给你一个数,问这个数能否等于一系列连续的质数的和: 解题思路:质数筛打出质数表:然后就是尺取法解决: 代码: #include<iostream> #include<algor ...

  8. Civil 3D 二次开发 新建CLR项目出现错误C2143

    新建CLR项目出现错误C2143 按照Objectarx Training创建.net混合项目,编译时出现一下错误: 原因不明: 解决方法: 在Stdafx.h文件中添加: #define WIN32 ...

  9. Codeforces Round #470 Div. 1

    A:暴力枚举x2的因子,由此暴力枚举x1,显然此时减去其最大质因子并+1即为最小x0. #include<iostream> #include<cstdio> #include ...

  10. P1130 红牌

    题目描述 某地临时居民想获得长期居住权就必须申请拿到红牌.获得红牌的过程是相当复杂 ,一共包括NN个步骤.每一步骤都由政府的某个工作人员负责检查你所提交的材料是否符合条件.为了加快进程,每一步政府都派 ...