总结

一、处理数据

1.1 向量化(vectorization)

  • (height, width, 3) ===> 展开shape为(heigh*width*3, m)的向量

1.2 特征归一化(Normalization)

  • 一般数据,使用标准化(Standardlization), z(i) = (x(i) - mean) / delta,mean与delta代表X的均值和标准差,最终特征处于【-1,1】区间
  • 对于图片,可直接使用 Min-Max Scaliing,即将每个特征直接除以 255,使值处于 【-1,1】之间

二、初始化参数

  • 一般将w 和 b随机初始化。这里用逻辑回归思想,设为0

三、梯度下降(Gradient descent)

  • 根据w, b和训练集,来训练数据。需要设定迭代次数与learning rate α

3.1 计算代价函数(前向传播)

# 激活函数
A = sigmoid(w.T.dot(X) + b)
# 代价函数
cost = -np.sum(Y * np.log(A) + (1-Y) * np.log(1 - A)) / m

3.2 反向传播计算梯度

dw = X.dot((A - Y).T) / m
db = np.sum(A - Y) / m

3.3 更新参数(w, b)

w = w - learning_rate * dw
b = b - learning_rate * db

四、预测测试集

  • 用训练好的模型(训练后的参数w, b),对测试集使用 y_hat = sigmoid(wx + b),计算预测结果的概率( np.round(y_hat)))

详细内容

逻辑回归

(1)  逻辑回归的代价函数(Logistic Regression Cost Function )

(2) 梯度下降法(Gradient Descent )

在你测试集上,通过最小化代价函数(成本函数)J(w,b)来训练的参数 w 和 b

假定代价函数(成本函数)J(

Neural Networks and Deep Learning 课程笔记(第二周)神经网络的编程基础 (Basics of Neural Network programming)的更多相关文章

  1. Neural Networks and Deep Learning 课程笔记(第四周)深层神经网络(Deep Neural Networks)

    1. 深层神经网络(Deep L-layer neural network ) 2. 前向传播和反向传播(Forward and backward propagation) 3. 总结 4. 深层网络 ...

  2. Neural Networks and Deep Learning 课程笔记(第三周)浅层神经网络(Shallow neural networks)

    3.1 神经网络概述(Neural Network Overview ) (神经网络中,我们要反复计算a和z,最终得到最后的loss function) 3.2 神经网络的表示(Neural Netw ...

  3. Neural Networks and Deep Learning学习笔记ch1 - 神经网络

    近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的. ...

  4. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第四周:深层神经网络(Deep Neural Networks)-课程笔记

    第四周:深层神经网络(Deep Neural Networks) 4.1 深层神经网络(Deep L-layer neural network) 有一些函数,只有非常深的神经网络能学会,而更浅的模型则 ...

  5. 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 3.Programming Assignment : Planar data classification with a hidden layer

    Planar data classification with a hidden layer Welcome to the second programming exercise of the dee ...

  6. 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 0、学习目标

    Learn to build a neural network with one hidden layer, using forward propagation and backpropagation ...

  7. 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 2、Practice Questions

    1.以下哪一项是正确的?(检查所有适用的) (A,D,F,G) A.  a[2] 表示第二层的激活函数值向量. B. X 是一个矩阵, 其中每一行都是一个训练示例. C. a[2] (12) 表示第二 ...

  8. 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 1、两层神经网络的单样本向量化表示与多样本向量化表示

    如上图所示的两层神经网络, 单样本向量化:                                                                                ...

  9. 吴恩达深度学习笔记1-神经网络的编程基础(Basics of Neural Network programming)

    一:二分类(Binary Classification) 逻辑回归是一个用于二分类(binary classification)的算法.在二分类问题中,我们的目标就是习得一个分类器,它以对象的特征向量 ...

随机推荐

  1. Java基础实践一:for关键字的实现原理

    Java源码: /** * Demo.java * com.yuanchuangyun.libra.web * * * ver date author * ────────────────────── ...

  2. Jquery 组 表单select交互选项

    <!DOCTYPE html><html lang="zh-cn"><head> <meta charset="utf-8&qu ...

  3. 微信小程序入門學習資料鏈接

    https://blog.csdn.net/github_38847071/article/details/73250258 https://blog.csdn.net/lily2016n/artic ...

  4. Lodop打印设计界面生成代码带”...(省略)”

    Lodop的设计界面中,菜单里的生成代码,如果打印项内容过多,后面会显示”...(省略)”,省略的是打印项的内容值,无论是纯文本还是超文本,都可以用选中打印项-右键-设置属性里找到该打印项的全部值,可 ...

  5. BZOJ2938[Poi2000]病毒——AC自动机

    题目描述 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码段,试问,是否 ...

  6. BZOJ4182 Shopping(点分治+树形dp)

    点分治,每次考虑包含根的连通块,做树形多重背包即可,dfs序优化.注意题面给的di范围是假的,坑了我0.5h,心态炸了. #include<iostream> #include<cs ...

  7. Dining POJ - 3281

    题意: f个食物,d杯饮料,每个牛都有想吃的食物和想喝的饮料,但食物和饮料每个只有一份 求最多能满足多少头牛.... 解析: 一道简单的无源汇拆点最大流   无源汇的一个最大流,先建立超级源s和超级汇 ...

  8. HSQL可视化工具

    本地使用HSQL数据库进行开发,多是集成在开发工具的内部,比如studio,往往看不到HSQL数据库,那么如何查看HSQL数据库呢? 可以使用hsql自带的可视化工具,运行hsqldb-*.jar 包 ...

  9. day12 max min zip 用法

    max min ,查看最大值,最小值 基础玩法 l = [1,2,3,4,5] print(max(l)) print(min(l)) 高端玩法 默认字典的取值是key的比较 age_dic={'al ...

  10. [转]GDB

    gdb调试coredump文件 gcc -g main.c //在目标文件加入源代码的信息 gdb a.out (gdb) start //开始调试 (gdb) n //一条一条执行 (gdb) st ...