最近手上有需要用matplotlib画图的活,在网上淘了本实践书,发现没有代码,于是手敲了一遍,mark下。

第一篇    第一章

图1.1

import matplotlib.pyplot as plt
import numpy as np from matplotlib import cm as cm #define data
x=np.linspace(0.5, 3.5, 100)
y=np.sin(x)
y1=np.random.randn(100) #scatter figure
plt.scatter(x, y1, c='0.25', label='scatter figure') #plot figure
plt.plot(x, y, ls='--', lw=2, label='plot figure') #some clean up
#去掉上边框和有边框
for spine in plt.gca().spines.keys():
if spine=='top' or spine=='right':
plt.gca().spines[spine].set_color('none') # x轴的刻度在下边框
plt.gca().xaxis.set_ticks_position('bottom') # y轴的刻度在左边框
plt.gca().yaxis.set_ticks_position('left') #设置x轴、y轴范围
plt.xlim(0.0, 4.0)
plt.ylim(-3.0, 3.0) #设置x轴、y轴标签
plt.xlabel('x_axis')
plt.ylabel('y_axis') #绘制x、y轴网格
plt.grid(True, ls=':', color='r') #绘制水平参考线
plt.axhline(y=0.0, c='r', ls='--', lw=2) #绘制垂直参考区域
plt.axvspan(xmin=1.0, xmax=2.0, facecolor='y', alpha=0.5) #绘制注解
plt.annotate('maximum', xy=(np.pi/2, 1.0), xytext=((np.pi/2)+0.15, 1.5),
weight='bold', color='r', arrowprops=dict(arrowstyle='->',
connectionstyle='arc3', color='r')) #绘制注解
plt.annotate('spines', xy=(0.75, -3), xytext=(0.35, -2.25),
weight='bold', color='r', arrowprops=dict(arrowstyle='->',
connectionstyle='arc3', color='r')) #绘制注解
plt.annotate('', xy=(0, -2.78), xytext=(0.4, -2.32),
weight='bold', color='r', arrowprops=dict(arrowstyle='->',
connectionstyle='arc3', color='r')) #绘制注解
plt.annotate('', xy=(3.5, -2.98), xytext=(3.6, -2.7),
weight='bold', color='r', arrowprops=dict(arrowstyle='->',
connectionstyle='arc3', color='r')) #绘制文本
plt.text(3.6, -2.70, "'|' is tickline", weight='bold', color='b')
plt.text(3.6, -2.95, "3.5 is tickline", weight='bold', color='b') plt.title("structure of matplotlib") plt.legend(loc='upper right') plt.show()

=======================================================

 

图 1.2

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.05, 10, 1000)
y=np.cos(x) plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure') plt.legend() plt.show()

=======================================================

图 1.3

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.05, 10, 1000)
y=np.random.rand(1000) plt.scatter(x,y,label='scatter figure') plt.legend() plt.show()

=======================================================

图1.4 

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.05, 10, 1000)
y=np.random.rand(1000) plt.scatter(x,y,label='scatter figure') plt.legend() plt.xlim(0.05, 10)
plt.ylim(0, 1) plt.show()

=======================================================

图 1.5

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.05, 10, 1000)
y=np.sin(x) plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure') plt.xlabel('x-axis')
plt.ylabel('y-axis') plt.legend() plt.show()

=======================================================

图  1.6

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.05, 10, 1000)
y=np.sin(x) plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure') plt.grid(linestyle=':', color='r') plt.legend() plt.show()

=======================================================

图  1.7

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.05, 10, 1000)
y=np.sin(x) plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure') plt.axhline(y=0.0, c='r', ls='--', lw=2)
plt.axvline(x=4.0, c='r', ls='--', lw=2) plt.legend() plt.show()

=======================================================

图 1.8

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.05, 10, 1000)
y=np.sin(x) plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure') plt.axvspan(xmin=4.0, xmax=6.0, facecolor='y', alpha=0.3)
plt.axhspan(ymin=0.0, ymax=0.5, facecolor='y', alpha=0.3) plt.legend() plt.show()

=======================================================

图 1.9

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.05, 10, 1000)
y=np.sin(x) plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure') plt.annotate('maximum', xy=(np.pi/2, 1.0), xytext=((np.pi/2)+1.0, 0.8),weight='bold', color='b',
arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='b')) plt.legend() plt.show()

=======================================================

图  1.10

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.05, 10, 1000)
y=np.sin(x) plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure') plt.text(3.1, 0.09, 'y=sin(x)', weight='bold', color='b') plt.legend() plt.show()

=======================================================

图  1.11

 

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.05, 10, 1000)
y=np.sin(x) plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure') plt.title("y=sin(x)") plt.legend() plt.show()

=======================================================

图  1.12

 

import matplotlib.pyplot as plt
import numpy as np x=np.linspace(0.05, 10, 1000)
y=np.sin(x) plt.plot(x,y,ls='-.', lw=2, c='c', label='plot figure') plt.legend(loc="lower right") plt.show()

《Python数据可视化之matplotlib实践》 源码 第一篇 入门 第一章的更多相关文章

  1. Python数据可视化——使用Matplotlib创建散点图

    Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...

  2. python 数据可视化(matplotlib)

    matpotlib 官网 :https://matplotlib.org/index.html matplotlib 可视化示例:https://matplotlib.org/gallery/inde ...

  3. Python数据可视化库-Matplotlib(一)

    今天我们来学习一下python的数据可视化库,Matplotlib,是一个Python的2D绘图库 通过这个库,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率图,条形图,错误图,散点图等等 废 ...

  4. Python数据可视化之Matplotlib实现各种图表

    数据分析就是将数据以各种图表的形式展现给领导,供领导做决策用,因此熟练掌握饼图.柱状图.线图等图表制作是一个数据分析师必备的技能.Python有两个比较出色的图表制作框架,分别是Matplotlib和 ...

  5. Python数据可视化利器Matplotlib,绘图入门篇,Pyplot介绍

    Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在 ...

  6. Python数据可视化库-Matplotlib(二)

    我们接着上次的继续讲解,先讲一个概念,叫子图的概念. 我们先看一下这段代码 import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.a ...

  7. Python数据可视化之matplotlib

    常用模块导入 import numpy as np import matplotlib import matplotlib.mlab as mlab import matplotlib.pyplot ...

  8. python数据可视化(matplotlib)

  9. python数据可视化-matplotlib入门(7)-从网络加载数据及数据可视化的小总结

    除了从文件加载数据,另一个数据源是互联网,互联网每天产生各种不同的数据,可以用各种各样的方式从互联网加载数据. 一.了解 Web API Web 应用编程接口(API)自动请求网站的特定信息,再对这些 ...

  10. Python数据可视化的四种简易方法

    摘要: 本文讲述了热图.二维密度图.蜘蛛图.树形图这四种Python数据可视化方法. 数据可视化是任何数据科学或机器学习项目的一个重要组成部分.人们常常会从探索数据分析(EDA)开始,来深入了解数据, ...

随机推荐

  1. 20 套监控平台统一成 1 套 Flashcat,国泰君安监控选型提效之路

    author:宋庆羽-国泰君安期货 运维工作最重要的就是维护系统的稳定性,其中监控是保证系统稳定性很重要的一环.通过监控可以了解系统的运行状态,及时发现问题和系统隐患,有助于一线人员快速解决问题,提高 ...

  2. echarts柱状图横(x)轴文字显示不全,一招解决

    柱状图底部X轴文字过长时,将会出现文字显示不全的问题,这是echarts为了美观默认的设置 现在我们把文章倾斜旋转点角度即可全部显示 以下是代码 scale() { var chartDom = do ...

  3. Docker入门系列之四:Docker镜像

    在本文中,您将学习如何加快Docker构建周期并创建轻量级镜像.遵循之前的文章中的食物隐喻,我们将沙拉隐喻为Docker镜像,同时减少Docker镜像的数量. 在本系列的第3部分中,我们介绍了十几个D ...

  4. Python使用.NET开发的类库来提高你的程序执行效率

    Python由于本身的特性原因,执行程序期间可能效率并不是很理想.在某些需要自己提高一些代码的执行效率的时候,可以考虑使用C#.C++.Rust等语言开发的库来提高python本身的执行效率.接下来, ...

  5. python利用公私钥加解密

    小贴士 这里不再赘述公私钥的生成过程.可以利用OpenSSL进行生成. 加密代码 #!/usr/bin/python #加密 #conda install pycrypto #提前安装模块 impor ...

  6. Kubernetes 审计(Auditing)

    目录 一.系统环境 二.前言 三.Kubernetes 审计简介 四.审计策略简介 五.启用审计 5.1 引入审计 5.2 启用审计 六.审计策略 6.1 记录审计阶段为:ResponseStarte ...

  7. 使用bootchart 对 高通Android 进行性能分析

    使用bootchart 对 高通Android 进行性能分析 Android版本:7.0 适用平台:高通和MTK 参考: https://blog.csdn.net/qq_19923217/artic ...

  8. Power BI进阶秘籍,干货满满!如何将度量值转化为切片器(动态切换分析指标),实操指南来了!

    Power BI进阶秘籍,干货满满!如何将度量值转化为切片器(动态切换分析指标),实操指南来了!   想要在Power BI中让度量值也能像维度一样灵活筛选?没问题,这里就为你揭秘如何将度量值转化为切 ...

  9. 算法金 | 致敬深度学习三巨头:不愧是腾讯,LeNet问的巨细。。。

    ​ 大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 读者参加面试,竟然在 LeNet 这个基础算法上被吊打~ LeNe ...

  10. 深度长文解析SpringWebFlux响应式框架15个核心组件源码

    Spring WebFlux 介绍 Spring WebFlux 是 Spring Framework 5.0 版本引入的一个响应式 Web 框架,它与 Spring MVC 并存,提供了一种全新的编 ...