设 $\al_n\geq 0$ 且 $\dps{\vlm{n}\al_n=0}$, 试求 $$\bex \vlm{n}\frac{1}{n}\sum_{k=1}^n \ln\sex{\frac{k}{n}+\al_n}. \eex$$

[Everyday Mathematics]20150116的更多相关文章

  1. [Everyday Mathematics]20150304

    证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\ ...

  2. [Everyday Mathematics]20150303

    设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f( ...

  3. [Everyday Mathematics]20150302

    $$\bex |p|<\frac{1}{2}\ra \int_0^\infty \sex{\frac{x^p-x^{-p}}{1-x}}^2\rd x =2(1-2p\pi \cot 2p\pi ...

  4. [Everyday Mathematics]20150301

    设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^ ...

  5. [Everyday Mathematics]20150228

    试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty ...

  6. [Everyday Mathematics]20150227

    (Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯 ...

  7. [Everyday Mathematics]20150226

    设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$

  8. [Everyday Mathematics]20150225

    设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\s ...

  9. [Everyday Mathematics]20150224

    设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.

随机推荐

  1. hdu 4447 Yuanfang, What Do You Think?

    思路: 这题有个结论也可以自己归纳: 对于给定的n,其约数用pi表示 T(n)=T(p1)T(p2)……T(pn)T(n') 其中T(n')是这个式子所独有的也就是 T(n')=(x^n-1)/T(p ...

  2. hdu 3441 Rotation

    总的来说,这题要2次用到polya定理. 由题目条件A*A=B*B+1,变形为(A-1)*(A+1)=K*B*B; 分别分解A-1和A+1的质因数,在合并在一起. 第一步:搜索B,对B*B的正方形涂色 ...

  3. linux入门教程(八) Linux磁盘管理

    [查看磁盘或者目录的容量 df 和 du] df 查看已挂载磁盘的总容量.使用容量.剩余容量等,可以不加任何参数,默认是按k为单位显示的 df常用参数有 –i -h -k –m等 -i 使用inode ...

  4. lintcode 中等题:Majority number II 主元素 II

    题目 主元素II 给定一个整型数组,找到主元素,它在数组中的出现次数严格大于数组元素个数的三分之一. 样例 给出数组[1,2,1,2,1,3,3] 返回 1 注意 数组中只有唯一的主元素 挑战 要求时 ...

  5. tomcat源码导入eclipse

    1. 获取源代码 方式一:从官网http://tomcat.apache.org/download-70.cgi 直接下载,官网提供了Binary 和 Source Code两种下载方式,要研究tom ...

  6. spring中的aware接口

    1.实现了相应的aware接口,这个类就获取了相应的资源. 2.spring中有很多aware接口,包括applicationContextAware接口,和BeanNameAware接口. 实现了这 ...

  7. photoshop:多边形选项

    你会制作圆滑的五角星吗? 以五边形为例:

  8. OSSEC配置文件ossec.conf中添加mysql服务

    配置路径:/opt/ossec/etc/ossec.conf <ossec_config>   <global>     <email_notification>y ...

  9. 公交wifi运营平台分析

    一.前言背景 昨晚下午,老板让看一些车载公交wifi后台管理的一些东西,这个随着移动端设备而兴起的wifi战,慢慢的也会越演越烈. 现在于很多人在外面的时候,进入一家店首先看的不是菜单,而是问一句“你 ...

  10. Java内部类总结 分类: 原理 2015-06-28 09:51 9人阅读 评论(0) 收藏

    内部类是指在一个外部类的内部再定义一个类.内部类作为外部类的一个成员,并且依附于外部类而存在的. 内部类可为静态,可用protected和private修饰(而外部类只能使用public和缺省的包访问 ...