time limit per test1 second

memory limit per test256 megabytes

inputstandard input

outputstandard output

Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.

Neko has two integers a and b. His goal is to find a non-negative integer k such that the least common multiple of a+k and b+k is the smallest possible. If there are multiple optimal integers k, he needs to choose the smallest one.

Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?

Input

The only line contains two integers a and b (1≤a,b≤109).

Output

Print the smallest non-negative integer k (k≥0) such that the lowest common multiple of a+k and b+k is the smallest possible.

If there are many possible integers k giving the same value of the least common multiple, print the smallest one.

Examples

inputCopy

6 10

outputCopy

2

inputCopy

21 31

outputCopy

9

inputCopy

5 10

outputCopy

0

Note

In the first test, one should choose k=2, as the least common multiple of 6+2 and 10+2 is 24, which is the smallest least common multiple possible.

求x和y加上一个k之后,使(x+k)和(y+k)的最小公倍数最小

解法lcm(x,y)=x*y/gcd(x,y),那么求gcd(x+k,y+k)的最大就好了,而知道gcd(x,y)=gcd(y-x,x),因为如果gcd(x,y)=c,那么,x%c=0,y%c=0,(y-x)%c=0,则,求gcd(y-x,x+k),求出所有的y-x的因子,然后全部都拿来算一下,现在要知道因子,求对应的k值,可知k+x是因子的倍数,则k=因子-(因子%x)就可以了,然后每一次算一下lcm,得出最大的保留就好了

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#define sf scanf
#define scf(x) scanf("%lld",&x)
#define scff(x,y) scanf("%lld%lld",&x,&y)
#define scfff(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define vi vector<int>
#define mp make_pair
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#define rep(i,a,n) for (ll i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
using namespace std;
const ll mod=1e9+7;
const double eps=1e-6;
const double pi=acos(-1.0);
const int inf=0x7fffffff;
const int N=1e7+7;
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
ll lcm(ll x,ll y)
{
return x*y/(gcd(x,y));
}
vector<int> v;
int main()
{
ll x,y;scff(x,y);
if(x>y) swap(x,y);
ll ans=0,maxn=lcm(x,y),ss=y-x;
for(ll i=1;i*i<=ss;i++)
{
if(ss%i==0)
{
v.push_back(i);
if(i*i!=ss)
v.push_back(ss/i);
}
}
rep(i,0,v.size() )
{
ll t=0;
if(x%v[i]!=0)
t=v[i]-x%v[i];
ll now=lcm(x+t,y+t);
if(now<maxn)
{
maxn=now;
ans=t;
}
}
cout<<ans;
return 0;
}

C. Neko does Maths的更多相关文章

  1. Codeforces C.Neko does Maths

    题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...

  2. Neko does Maths CodeForces - 1152C 数论欧几里得

    Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...

  3. codeforces#1152C. Neko does Maths(最小公倍数)

    题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...

  4. Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)

    传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...

  5. C. Neko does Maths(数论 二进制枚举因数)

     题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...

  6. CF 552 Neko does Maths

    给出两个数a,b 求k     使得 a+k b+k有最小公倍数 a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小 因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大 ...

  7. Codeforce Round #554 Div.2 C - Neko does Maths

    数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...

  8. Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)

    题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k     算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...

  9. CF1152C Neko does Maths

    思路: 假设a <= b,lcm(a + k, b + k) = (a + k) * (b + k) / gcd(a + k, b + k) = (a + k) * (b + k) / gcd( ...

随机推荐

  1. flask学习(一)

    特点: 短小精悍,可扩展性强 依赖wsgi:werkzurg werkzurg示例: from werkzeug.wrappers import Request, Response from werk ...

  2. Salesforce知识整理(一)之Lightning Web Component Tools

    目录 LWC知识整理(一) 工具 Salesforce CLI Visual Studio Code(VS Code) Developer Hub(Dev Hub) 开启Dev Hub 相关资料 茶余 ...

  3. mui 记录

    1.轮播添加无限循环 需要在 .mui-slider-group节点上增加.mui-slider-loop类 2.web移动端侧滑与滑动同时存在 参考https://segmentfault.com/ ...

  4. poj 1741

    点分治入门题 首先发现是树上点对的问题,那么首先想到上点分治 然后发现题目要求是求出树上点对之间距离小于等于k的对数,那么我们很自然地进行分类: 对于一棵有根树,树上的路径只有两种:一种经过根节点,另 ...

  5. php 常用的知识点归集(下)

    24.静态属性与静态方法在类中的使用 需求:在玩CS的时候不停有伙伴加入,那么现在想知道共有多少人在玩,这个时候就可能用静态变量的方法来处理 利用原有的全局变量的方法来解决以上的问题 <?php ...

  6. Eclipse使用技巧 - 2. Eclipse自动补全功能轻松设置

    本文介绍如何设置Eclipse代码自动补全功能.轻松实现输入任意字母均可出现代码补全提示框. Eclipse代码自动补全功能默认只包括 点”.” ,即只有输入”.”后才出现自动补全的提示框.想要自动补 ...

  7. git 提示error setting certificate verify locations 解决方案

    问题:使用git extension 拉取或者push代码,提示 "C:\Program Files\Git\bin\git.exe" pull --progress " ...

  8. apache poi 读取xlsx并导出为json(没考虑xls)

    1.用到的jar包:fastjson-1.2.9.poi(poi-3.15.poi-ooxml-3.15.poi-ooxml-schemas-3.15.xmlbeans-2.6.0.commons-c ...

  9. python序列化与反序列

    python序列化与反序列 在python中提供了两个模块可进行序列化.分别是pickle和json.他们两者的功能都差不多,dumps和dump都是进行序列化,而loads和load则是反序列化. ...

  10. 建造者模式(Builder Pattern)

    建造者模式(Builder Pattern) 它可以将多个简单的对象一步一步构建成一个复杂的对象. 意图:将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示. 主要解决:主要解决在软 ...