C. Neko does Maths
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.
Neko has two integers a and b. His goal is to find a non-negative integer k such that the least common multiple of a+k and b+k is the smallest possible. If there are multiple optimal integers k, he needs to choose the smallest one.
Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?
Input
The only line contains two integers a and b (1≤a,b≤109).
Output
Print the smallest non-negative integer k (k≥0) such that the lowest common multiple of a+k and b+k is the smallest possible.
If there are many possible integers k giving the same value of the least common multiple, print the smallest one.
Examples
inputCopy
6 10
outputCopy
2
inputCopy
21 31
outputCopy
9
inputCopy
5 10
outputCopy
0
Note
In the first test, one should choose k=2, as the least common multiple of 6+2 and 10+2 is 24, which is the smallest least common multiple possible.
求x和y加上一个k之后,使(x+k)和(y+k)的最小公倍数最小
解法lcm(x,y)=x*y/gcd(x,y),那么求gcd(x+k,y+k)的最大就好了,而知道gcd(x,y)=gcd(y-x,x),因为如果gcd(x,y)=c,那么,x%c=0,y%c=0,(y-x)%c=0,则,求gcd(y-x,x+k),求出所有的y-x的因子,然后全部都拿来算一下,现在要知道因子,求对应的k值,可知k+x是因子的倍数,则k=因子-(因子%x)就可以了,然后每一次算一下lcm,得出最大的保留就好了
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#define sf scanf
#define scf(x) scanf("%lld",&x)
#define scff(x,y) scanf("%lld%lld",&x,&y)
#define scfff(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define vi vector<int>
#define mp make_pair
#define pf printf
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#define rep(i,a,n) for (ll i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
using namespace std;
const ll mod=1e9+7;
const double eps=1e-6;
const double pi=acos(-1.0);
const int inf=0x7fffffff;
const int N=1e7+7;
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
ll lcm(ll x,ll y)
{
return x*y/(gcd(x,y));
}
vector<int> v;
int main()
{
ll x,y;scff(x,y);
if(x>y) swap(x,y);
ll ans=0,maxn=lcm(x,y),ss=y-x;
for(ll i=1;i*i<=ss;i++)
{
if(ss%i==0)
{
v.push_back(i);
if(i*i!=ss)
v.push_back(ss/i);
}
}
rep(i,0,v.size() )
{
ll t=0;
if(x%v[i]!=0)
t=v[i]-x%v[i];
ll now=lcm(x+t,y+t);
if(now<maxn)
{
maxn=now;
ans=t;
}
}
cout<<ans;
return 0;
}
C. Neko does Maths的更多相关文章
- Codeforces C.Neko does Maths
题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...
- Neko does Maths CodeForces - 1152C 数论欧几里得
Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...
- codeforces#1152C. Neko does Maths(最小公倍数)
题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
- C. Neko does Maths(数论 二进制枚举因数)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...
- CF 552 Neko does Maths
给出两个数a,b 求k 使得 a+k b+k有最小公倍数 a,b同时加上一个非负整数k,使得,a+k,b+k的最小公倍数最小 因为最小公公倍数=x*y / gcd(x,y),所以肯定离不开最大 ...
- Codeforce Round #554 Div.2 C - Neko does Maths
数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)
题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k 算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...
- CF1152C Neko does Maths
思路: 假设a <= b,lcm(a + k, b + k) = (a + k) * (b + k) / gcd(a + k, b + k) = (a + k) * (b + k) / gcd( ...
随机推荐
- h1-h3使用
一个页面也就只允许出现一个h1标签.内容页文章的标题,是seo中使用最多的地方,基本的文章页面标题都是使用h1标签.一.<h1>用来修饰网页的主标题,一般是网页的标题 ,文章标题,< ...
- python vs C++ 类
1. 什么是动态语言(wikipedia) 在运行时,可以进行一些操作(静态语言在编译时执行),比如扩展对象的定义.修改类型等 2. 定义类和创建对象 C++ python class A{ publ ...
- margin:auto你真的理解么?
含义 margin:auto是具有强烈计算意味的关键字,用来计算元素对应方向应该获得的剩余空间大小 填充规则 (1) 如果一侧定值,一侧auto,则auto为剩余空间大小 (2) 如果两侧均是auto ...
- Beautiful用法总结
一.安装 通过命令:pip3 install Beautifulsoup4: 安装后运行:from bs4 import BeautifulSoup,没有报错,说明安装正常: 二.解析库 Beauti ...
- python单元测试框架unittest总结
unittest.TestCase:TestCase类,所有测试用例类继承的基本类. class BaiduTest(unittest.TestCase): TestCase类的属性如下: setUp ...
- JAVA -数据类型与表达式---字符串
字符串 Java中,字符串就是对象,它由 String类定义.字符串是计算机程序设计中非常基础的类型,因此Java允许定义字符串常量(string literal),并以双引号作为字符串的定界符. 一 ...
- 范围for循环
1.C++使用如下方法遍历一个容器: #include "stdafx.h" #include<iostream> #include<vector> int ...
- Android Q 变更和新特性
安全和隐私变更 隐私保护是Android Q重要的主题之一,Android Q带来了一系列增强用户隐私保护的变更. 1 应用文件存储空间限制 应用访问限制是Android Q影响最大变更之一.在And ...
- 基于Filebeat+Kafka+Flink仿天猫双11实时交易额
1. 写在前面 在大数据实时计算方向,天猫双11的实时交易额是最具权威性的,当然技术架构也是相当复杂的,不是本篇博客的简单实现,因为天猫双11的数据是多维度多系统,实时粒度更微小的.当然在技术的总体架 ...
- 使用腾讯云服务器CentOS搭建JavaWeb环境
yum list java* yum install java-1.7.0-openjdk* -y java -version cd /usr/local wget https://mc.qcloud ...