不多说,直接上代码。

Hadoop MapReduce编程 API入门系列之小文件合并(二十九)

生成的结果,作为输入源。

代码

package zhouls.bigdata.myMapReduce.ParseTVDataCompressAndCounter;

import java.net.URI;

import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

/**
*
* @function 统计无效数据和对输出结果进行压缩
* @author 小讲
*
*/
public class CompressAndCounter extends Configured implements Tool
{
// 定义枚举对象
public static enum LOG_PROCESSOR_COUNTER
{
BAD_RECORDS
};
/**
*
* @function Mapper 解析数据,统计无效数据,并输出有效数据
*
*/
public static class CompressAndCounterMap extends Mapper<LongWritable, Text, Text, Text>
{
protected void map(LongWritable key, Text value, Context context) throws java.io.IOException, InterruptedException
{
// 解析每条机顶盒记录,返回list集合
List<String> list = ParseTVData.transData(value.toString()); //调用ParseTVData.java下的transData方法
int length = list.size();
// 无效记录
if (length == 0)
{
// 动态自定义计数器
context.getCounter("ErrorRecordCounter", "ERROR_Record_TVData").increment(1);
// 枚举声明计数器
context.getCounter(LOG_PROCESSOR_COUNTER.BAD_RECORDS).increment(1);
} else
{
for (String validateRecord : list)
{
//输出解析数据
context.write(new Text(validateRecord), new Text(""));
}
}

}
}
/**
* @function 任务驱动方法
*
*/
@Override
public int run(String[] args) throws Exception
{
// TODO Auto-generated method stub
//读取配置文件
Configuration conf = new Configuration();
//文件系统接口
URI uri = new URI("hdfs://HadoopMaster:9000");
//输出路径
Path mypath = new Path(args[1]);
// 创建FileSystem对象
FileSystem hdfs = FileSystem.get(uri, conf);
if (hdfs.isDirectory(mypath))
{
//删除已经存在的文件路径
hdfs.delete(mypath, true);
}
Job job = new Job(conf, "CompressAndCounter");//新建一个任务
job.setJarByClass(CompressAndCounter.class);//设置主类

job.setMapperClass(CompressAndCounterMap.class);//只有 Mapper
job.setOutputKeyClass(Text.class);//输出 key 类型
job.setOutputValueClass(Text.class);//输出 value 类型

FileInputFormat.addInputPath(job, new Path(args[0]));//输入路径
FileOutputFormat.setOutputPath(job, new Path(args[1]));//输出路径


FileOutputFormat.setCompressOutput(job, true);//对输出结果设置压缩
FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);//设置压缩类型

job.waitForCompletion(true);//提交任务
return 0;
}
/**
* @function main 方法
* @param args 输入 输出路径
* @throws Exception
*/
public static void main(String[] args) throws Exception
{
String[] date = {"20120917","20120918","20120919","20120920","20120921","20120922","20120923"};
int ec = 1;
for(String dt:date)
{
String[] args0 = { "hdfs://HadoopMaster:9000/middle/tv/"+dt+".txt",
"hdfs://HadoopMaster:9000/junior/tvCompressResult/"+dt };

// String[] args0 = { "./data/compressAndCounter/"+dt+".txt",
// "hdfs://HadoopMaster:9000/junior/tvCompressResult/"+dt };

ec = ToolRunner.run(new Configuration(), new CompressAndCounter(), args0);
}
System.exit(ec);
}
}

package zhouls.bigdata.myMapReduce.ParseTVDataCompressAndCounter;

import java.util.ArrayList;

import java.util.List;
import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.jsoup.nodes.Element;
import org.jsoup.select.Elements;

/**
*
* @function 解析数据
*
*
*/
public class ParseTVData
{
/**
* @function 使用 Jsoup 工具,解析输入数据,
* @param text
* @return list
*/
public static List<String> transData(String text)
{
List<String> list = new ArrayList<String>();
Document doc;
String rec = "";
try
{
doc = Jsoup.parse(text);// jsoup解析数据
Elements content = doc.getElementsByTag("WIC");
String num = content.get(0).attr("cardNum");// 记录编号
if (num == null || num.equals(""))
{
num = " ";
}

String stbNum = content.get(0).attr("stbNum");// 机顶盒号
if (stbNum.equals(""))
{
return list;
}

String date = content.get(0).attr("date");// 日期

Elements els = doc.getElementsByTag("A");
if (els.isEmpty())
{
return list;
}

for (Element el : els)
{
String e = el.attr("e");// 结束时间

String s = el.attr("s");// 开始时间

String sn = el.attr("sn");// 频道名称

rec = stbNum + "@" + date + "@" + sn + "@" + s + "@" + e;
list.add(rec);
}
} catch (Exception e)
{
System.out.println(e.getMessage());
return list;
}
return list;
}
}

Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之薪水统计(三十一)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.SalaryCount; import java.io.IOException; import jav ...

  2. Hadoop MapReduce编程 API入门系列之Crime数据分析(二十五)(未完)

    不多说,直接上代码. 一共12列,我们只需提取有用的列:第二列(犯罪类型).第四列(一周的哪一天).第五列(具体时间)和第七列(犯罪场所). 思路分析 基于项目的需求,我们通过以下几步完成: 1.首先 ...

  3. Hadoop MapReduce编程 API入门系列之网页排序(二十八)

    不多说,直接上代码. Map output bytes=247 Map output materialized bytes=275 Input split bytes=139 Combine inpu ...

  4. Hadoop MapReduce编程 API入门系列之二次排序(十六)

    不多说,直接上代码. -- ::, INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with pr ...

  5. Hadoop MapReduce编程 API入门系列之分区和合并(十四)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.Star; import java.io.IOException; import org.apache ...

  6. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  7. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  8. Hadoop MapReduce编程 API入门系列之计数器(二十七)

    不多说,直接上代码. MapReduce 计数器是什么?    计数器是用来记录job的执行进度和状态的.它的作用可以理解为日志.我们可以在程序的某个位置插入计数器,记录数据或者进度的变化情况. Ma ...

  9. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

随机推荐

  1. HDU 4777 Rabbit Kingdom (2013杭州赛区1008题,预处理,树状数组)

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  2. jq 一些小方法

    js 控制a标签的onclick方法 document.getElementById("a3").onclick = ""; window.document.g ...

  3. SQLite语句练习题

    1. 查询Student表中的所有记录的Sname.Ssex和Class列. 2. 查询教师所有的单位即不重复的Depart列. 3. 查询Student表的所有记录. 4. 查询Score表中成绩在 ...

  4. 正向代理与反向代理的区别【Nginx读书笔记】

    正向代理的概念 正向代理,也就是传说中的代理,他的工作原理就像一个跳板, 简单的说, 我是一个用户,我访问不了某网站,但是我能访问一个代理服务器 这个代理服务器呢,他能访问那个我不能访问的网站 于是我 ...

  5. [转载]BT656/BT601/BT1120协议

     [转载] BT656/BT601/BT1120协议以及DM365/DM355/DM6467上使用的YUV颜色空间说明   ITU-R BT.601和ITU-RBT.656国际电信联盟(Interna ...

  6. ES pom配置

    https://github.com/elastic/elasticsearch/issues/19415 <dependency> <groupId>org.elastics ...

  7. windbg

    1, symbols  : srv*c:\symbols*http://msdl.microsoft.com/download/symbols 2,.loadby sos mscorwks  or   ...

  8. 微信自定义菜单view类型获取openid访问网页

    用户点击view类型按钮后,微信客户端将会打开开发者在按钮中填写的url值 (即网页链接),达到打开网页的目的,但是view不能获取用户的openid,需与网页授权获取用户基本信息接口结合使用,获得用 ...

  9. Servlet与JSP的区别

    一.基本概念 1.1 Servlet Servlet是一种服务器端的Java应用程序,具有独立于平台和协议的特性,可以生成动态的Web页面.它担当客户请求(Web浏览器或其他HTTP客户程序)与服务器 ...

  10. SQLServer2012中用于记录数据操作时刻的附加字段使用datetime2(3)就可以了

    datetime2(3)精确到毫秒(听说),约等于2005时代的datetime类型.实际上后者是精确到3.33毫秒(也是听说). ) = GETDATE(); ) = GETDATE(); ) = ...