Expect the Expected UVA - 11427(概率dp)
题意:
每天晚上你都玩纸牌,如果第一次就赢了,就高高兴兴的去睡觉,如果输了就继续玩。假如每盘游戏你获胜的概率都为p,每盘游戏输赢独立。如果当晚你获胜的局数的比例严格大于p时才停止,而且每天晚上最多只能玩n局,如果获胜比例一直不超过p的话,以后就再也不玩纸牌了。问在平均情况下,你会玩多少个晚上纸牌。
解析:
求出一天的就完蛋的概率P,然后符合超几何分布,则期望的天数即为1/P
设dp[i][j]为前i次游戏 j次成功的概率 则 dp[i][j] = dp[i-1][j-1]*p + dp[i-1][j]*(1-p);
最后累加P = dp[n][1] + dp[n][2] + ``````` 一直加到成功的次数除n 等于给出的p 即可
然后输出1/P
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(a, n) for(int i=a; i<=n; i++)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
double dp[][]; int main()
{
int T, kase = ;
cin>> T;
while(T--)
{
mem(dp, );
double a, b;
int n;
scanf("%lf/%lf%d", &a, &b, &n);
double p = a/(double) b;
dp[][] = , dp[][] = ;
rap(, n)
{
for(int j=; j*b <= a*i; j++) //等价于枚举满足j/i <= a/b 的j, 但避免了误差
{
dp[i][j] = dp[i-][j] * (-p);
if(j) dp[i][j] += dp[i-][j-] * p; //防止越界
}
}
double P = 0.0;
for(int j=; j*b <= a*n; j++)
P += dp[n][j]; printf("Case #%d: %d\n", ++kase, (int)(/P)); } return ;
}
Expect the Expected UVA - 11427(概率dp)的更多相关文章
- UVa 11427 Expect the Expected (数学期望 + 概率DP)
题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...
- UVA 11427 (概率DP+期望)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 题目大意:每晚打游戏.每晚中,赢一局概率p,最多玩n局, ...
- UVa 11427 (期望 DP) Expect the Expected
设d(i, j)表示前i局每局获胜的比例均不超过p,且前i局共获胜j局的概率. d(i, j) = d(i-1, j) * (1-p) + d(i-1, j-1) * p 则只玩一天就就不再玩的概率Q ...
- uva 12723 概率dp
Dudu is a very starving possum. He currently stands in the first shelf of a fridge. This fridge isco ...
- UVA 11427 - Expect the Expected(概率递归预期)
UVA 11427 - Expect the Expected 题目链接 题意:玩一个游戏.赢的概率p,一个晚上能玩n盘,假设n盘都没赢到总赢的盘数比例大于等于p.以后都不再玩了,假设有到p就结束 思 ...
- uva 11427 - Expect the Expected(概率)
题目链接:uva 11427 - Expect the Expected 题目大意:你每天晚上都会玩纸牌,每天固定最多玩n盘,每盘胜利的概率为p,你是一个固执的人,每天一定要保证胜局的比例大于p才会结 ...
- 11427 - Expect the Expected(概率期望)
11427 - Expect the Expected Some mathematical background. This problem asks you to compute the expec ...
- [uva 11762]Race to 1[概率DP]
引用自:http://hi.baidu.com/aekdycoin/item/be20a91bb6cc3213e3f986d3,有改动 题意: 已知D, 每次从[1,D] 内的所有素数中选择一个Ni, ...
- UVA 10900 So you want to be a 2n-aire? (概率dp)
题意:玩家初始的金额为1:给出n,表示有n道题目:t表示说答对一道题目的概率在t到1之间均匀分布. 每次面对一道题,可以选择结束游戏,获得当前奖金:或者回答下一道问题,答对的话奖金翻倍,答错的话结束游 ...
随机推荐
- Sqlserver新增自增列
if exists(select * from syscolumns where id=object_id('表名') and name='列名') begin alter table 表名 drop ...
- Scrapy爬取美女图片第四集 突破反爬虫(上)
本周又和大家见面了,首先说一下我最近正在做和将要做的一些事情.(我的新书<Python爬虫开发与项目实战>出版了,大家可以看一下样章) 技术方面的事情:本次端午假期没有休息,正在使用fl ...
- 180725-InfluxDB-v1.6.0安装和简单使用小结
InfluxDB安装和简单使用小结 InfluxDB是一个时序性数据库,因为工作需求,安装后使用测试下是否支持大数据下的业务场景 说明: 安装最新版本 v1.6.0 集群版本要收费,单机版本免费 内部 ...
- 自动化运维工具saltstack02 -- 之SaltStack的配置管理
SaltStack的配置管理 1.配置管理说明 配置管理,顾名思义及配置与管理, salt-master的配置文件编写格式之YAML语法说明: 数据的结构通过缩进来表示,每一级用两个空格来表示缩进,如 ...
- ideal快捷键
百度一搜索,发现很多快捷键说明,我但是有些说得不对的,我列出来的这些快捷键,有一部分是需要你百度好久,甚至百度一上午才能搜索出来的,并且戴着老花镜.这样的话,在实际工作者,对于初级程序员来说,成本太高 ...
- js判断PC端 移动端 并跳转到对应页面
一.PC端跳转到移动端 html页面: <script>var webroot="/",catid="{$catid}",murl="m/ ...
- 如何选择 .NET Framework目标版本
如何选择 .NET Framework目标版本 简介 .NET Framework是所有 .NET程序赖以运行的基础. 版本 到目前位置 .NET Framework共出了: .NET Framewo ...
- Vue-lazyload 的使用
Vue 项目使用 Vue-lazyload 做图片懒加载. 下载 下载 Vue-lazyload 的包NPM包 npm install vue-lazyload --save 引入 在项目 main. ...
- mongodb windows 4 zip安装
安装mongoDB目的:学习Express,顺带mongodb. 本文目的: 4.0.2的mongodb在windows7上竟然安装不了. 没办法,用压缩包手动安装吧... 安装环境:win7sp1x ...
- python sys模块使用详情
python常用模块目录 sys模块提供了一系列有关Python运行环境的变量和函数.1.sys.argv可以用sys.argv获取当前正在执行的命令行参数的参数列表(list).变量解释sys.ar ...