题意:

  每天晚上你都玩纸牌,如果第一次就赢了,就高高兴兴的去睡觉,如果输了就继续玩。假如每盘游戏你获胜的概率都为p,每盘游戏输赢独立。如果当晚你获胜的局数的比例严格大于p时才停止,而且每天晚上最多只能玩n局,如果获胜比例一直不超过p的话,以后就再也不玩纸牌了。问在平均情况下,你会玩多少个晚上纸牌。

解析:

  求出一天的就完蛋的概率P,然后符合超几何分布,则期望的天数即为1/P

设dp[i][j]为前i次游戏 j次成功的概率  则 dp[i][j] = dp[i-1][j-1]*p + dp[i-1][j]*(1-p);

最后累加P = dp[n][1] + dp[n][2] + ```````  一直加到成功的次数除n 等于给出的p 即可

然后输出1/P

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(a, n) for(int i=a; i<=n; i++)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
double dp[][]; int main()
{
int T, kase = ;
cin>> T;
while(T--)
{
mem(dp, );
double a, b;
int n;
scanf("%lf/%lf%d", &a, &b, &n);
double p = a/(double) b;
dp[][] = , dp[][] = ;
rap(, n)
{
for(int j=; j*b <= a*i; j++) //等价于枚举满足j/i <= a/b 的j, 但避免了误差
{
dp[i][j] = dp[i-][j] * (-p);
if(j) dp[i][j] += dp[i-][j-] * p; //防止越界
}
}
double P = 0.0;
for(int j=; j*b <= a*n; j++)
P += dp[n][j]; printf("Case #%d: %d\n", ++kase, (int)(/P)); } return ;
}

Expect the Expected UVA - 11427(概率dp)的更多相关文章

  1. UVa 11427 Expect the Expected (数学期望 + 概率DP)

    题意:某个人每天晚上都玩游戏,如果第一次就䊨了就高兴的去睡觉了,否则就继续直到赢的局数的比例严格大于 p,并且他每局获胜的概率也是 p,但是你最玩 n 局,但是如果比例一直超不过 p 的话,你将不高兴 ...

  2. UVA 11427 (概率DP+期望)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 题目大意:每晚打游戏.每晚中,赢一局概率p,最多玩n局, ...

  3. UVa 11427 (期望 DP) Expect the Expected

    设d(i, j)表示前i局每局获胜的比例均不超过p,且前i局共获胜j局的概率. d(i, j) = d(i-1, j) * (1-p) + d(i-1, j-1) * p 则只玩一天就就不再玩的概率Q ...

  4. uva 12723 概率dp

    Dudu is a very starving possum. He currently stands in the first shelf of a fridge. This fridge isco ...

  5. UVA 11427 - Expect the Expected(概率递归预期)

    UVA 11427 - Expect the Expected 题目链接 题意:玩一个游戏.赢的概率p,一个晚上能玩n盘,假设n盘都没赢到总赢的盘数比例大于等于p.以后都不再玩了,假设有到p就结束 思 ...

  6. uva 11427 - Expect the Expected(概率)

    题目链接:uva 11427 - Expect the Expected 题目大意:你每天晚上都会玩纸牌,每天固定最多玩n盘,每盘胜利的概率为p,你是一个固执的人,每天一定要保证胜局的比例大于p才会结 ...

  7. 11427 - Expect the Expected(概率期望)

    11427 - Expect the Expected Some mathematical background. This problem asks you to compute the expec ...

  8. [uva 11762]Race to 1[概率DP]

    引用自:http://hi.baidu.com/aekdycoin/item/be20a91bb6cc3213e3f986d3,有改动 题意: 已知D, 每次从[1,D] 内的所有素数中选择一个Ni, ...

  9. UVA 10900 So you want to be a 2n-aire? (概率dp)

    题意:玩家初始的金额为1:给出n,表示有n道题目:t表示说答对一道题目的概率在t到1之间均匀分布. 每次面对一道题,可以选择结束游戏,获得当前奖金:或者回答下一道问题,答对的话奖金翻倍,答错的话结束游 ...

随机推荐

  1. 源码阅读-GlobalTimer

    最近看到一篇文章推了一个开源项目,GlobalTimer.主要是可以用一个定时器来统一管理多个定时任务,可以针对特定任务进行管理. 一.原理 1.一个公共的timer 2.封装任务到自定义个Event ...

  2. (一)SpringBoot2.0基础篇- 介绍及HelloWorld初体验

    1.SpringBoot介绍: 根据官方SpringBoot文档描述,BUILD ANYTHING WITH SPRING BOOT (用SPRING BOOT构建任何东西,很牛X呀!),下面是官方文 ...

  3. python--自定义模块

    python模块说明:类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才能完成(函数又可以在不 ...

  4. C++自学第二课:对象和类的概念

    既然是C++,比C语言多了最重要的概念:面向对象. 面向对象?对象是什么?Girlfriend? 我天天面向她也没学会C++. 我觉得对象就是有统一特征的一类编程目标. 打个比方说墙上有个开关,我一按 ...

  5. nginx main函数

    源代码: int ngx_cdecl main(int argc, char *const *argv) { ngx_int_t i; ngx_log_t *log; ngx_cycle_t *cyc ...

  6. python编辑用户登入界面

    1.需求分析 登入界面需要达到以下要求: 系统要有登入和注册两个选项可供选择 系统要能够实现登入出错提示,比如账户密码错误等,用户信息保存在user_info.txt文件夹中 系统要能够进行登入错误次 ...

  7. Loadrunner教程--常用操做流程

    1loadrunner压力测试一般使用流程 1.1loadrunner压力测试原理 本质就是在loadrunner上模拟多个用户同时按固定行为访问web站点.其中固定行为在loadrunner中是通过 ...

  8. Debian 9 + Windows 10 双系统安装体验

    很久之前就想在自己的电脑上也装个 Debian 玩玩了,最近正好有时间折腾,就踩了踩坑在笔记本上装了玩玩~ UEFI + GPT 解决启动相关的麻烦配置 如果在支持 UEFI 的电脑上安装 Debia ...

  9. 20162328蔡文琛 Bag类

    在刚刚开始着手这个作业时,想的是使用for循环来自己写出add等方法来,但是在看过API后知道了Arraylist这个java已有的列表类,于是就只用ArrayList的方法很快的就做了出来.在进行B ...

  10. Android开发第二阶段(6)

    今天:对sdcard的操作有了进一步的了解和深入,为程序可以自主扫描并添加sdcard的MP3格式文件 明天:最后的修正.