题面

N

N

N 种糖果,

M

M

M 个小孩子,第

i

i

i 种糖果有

A

i

A_i

Ai​ 个,第

i

i

i 个孩子不能有超过

B

i

B_i

Bi​ 个同种类型的糖果,第

i

i

i 个孩子的糖果总数不能超过

C

i

C_i

Ci​ 。

合理分配糖果,问能分配出去的最大糖果数。

N

,

M

2

e

5

N,M\leq 2e5

N,M≤2e5 。

题解

不难想到,这就是最大流啊!

可是我们完全没法建图,更是跑不过。

那,模拟最大流?

您可以试试,不过我们这道题的正解是用最大流最小割定理

最大流等于最小割,此题最大流不好求,我们就求最小割。

一共有三类边,一类是源点连向每种糖果的边,权值为

A

i

A_i

Ai​ ,第二类是糖果和孩子之间的连边,孩子的每条入边边权都是

B

i

B_i

Bi​ ,第三类是孩子连向汇点的边,边权为

C

i

C_i

Ci​ 。

我们割掉一些边使得源点到不了汇点,可以逐个考虑。首先,糖果之间的顺序不重要,我们先把糖果按

A

i

A_i

Ai​ 从小到大排个序,割掉的边一定是个前缀。我们枚举割掉多少边,对应就已经有多少种糖果和源点不连通了,剩下的糖果,设一共有

X

X

X 种,要保证割掉第二类或第三类边后不与汇点连通。由于我们知道每种糖果与每个孩子都是存在边的,因此剩下的就是对于每个小孩子,独立地选择是割掉自己连向汇点的边(

C

i

C_i

Ci​),还是割掉从源点连过来的边(

X

B

i

X\cdot B_i

X⋅Bi​),选两者的较小值。由于决策是关于

X

X

X 单向变化的(

X

X

X 小到一定程度就不割

C

i

C_i

Ci​ 了),我们可以预处理出每个孩子决策变化时的

X

X

X 值。

时间复杂度

O

(

n

log

n

)

O(n\log n)

O(nlogn) ,基排可以

O

(

n

)

O(n)

O(n) 。

CODE

#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<ctime>
#include<queue>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 200005
#define LL long long
#define DB double
#define ENDL putchar('\n')
#define lowbit(x) (-(x) & (x))
#define FI first
#define SE second
#define eps (1e-4)
#define BI bitset<MAXN>
LL read() {
LL f=1,x=0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f*x;
}
void putpos(LL x) {
if(!x) return ;
putpos(x/10); putchar('0'+(x%10));
}
void putnum(LL x) {
if(!x) putchar('0');
else if(x < 0) putchar('-'),putpos(-x);
else putpos(x);
}
inline void AIput(LL x,char c) {
putnum(x); putchar(c);
}
int n,m,s,o,k;
LL a[MAXN],b[MAXN],c[MAXN];
vector<int> bu[MAXN];
int main() {
n = read();m = read();
for(int i = 1;i <= n;i ++) {
a[i] = read();
}
sort(a + 1,a + 1 + n);
LL sm = 0,sb = 0;
for(int i = 1;i <= m;i ++) b[i] = read();
for(int i = 1;i <= m;i ++) {
c[i] = read();
sm += c[i];
int le = (int)max(0ll,(LL)n - (c[i]/b[i]));
if(le <= 0) {
sm -= c[i];
sm += n*1ll*b[i];
sb += b[i];
}
else bu[le].push_back(i);
}
LL ans = sm;
for(int i = 1;i <= n;i ++) {
sm -= sb;
sm += a[i];
for(int j = 0;j < (int)bu[i].size();j ++) {
int y = bu[i][j];
sm -= c[y]; sm += (n-i) *1ll* b[y];
sb += b[y];
}
ans = min(ans,sm);
}
printf("%lld\n",ans);
return 0;
}

ARC125E - Snack (网络流)的更多相关文章

  1. plain framework 1 网络流 缓存数据详解

    网络流是什么?为什么网络流中需要存在缓存数据?为什么PF中要采用缓存网络数据的机制?带着这几个疑问,让我们好好详细的了解一下在网络数据交互中我们容易忽视以及薄弱的一块.该部分为PF现有的网络流模型,但 ...

  2. 网络流模板 NetworkFlow

    身边的小伙伴们都在愉快地刷网络流,我也来写一发模板好了. Network Flow - Maximum Flow Time Limit : 1 sec, Memory Limit : 65536 KB ...

  3. COGS732. [网络流24题] 试题库

    «问题描述:假设一个试题库中有n道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取m 道题组成试卷.并要求试卷包含指定类型的试题.试设计一个满足要求的组卷算法.«编程任务: ...

  4. ACM/ICPC 之 有流量上下界的网络流-Dinic(可做模板)(POJ2396)

    //有流量上下界的网络流 //Time:47Ms Memory:1788K #include<iostream> #include<cstring> #include<c ...

  5. BZOJ 3144 [Hnoi2013]切糕 ——网络流

    [题目分析] 网络流好题! 从割的方面来考虑问题往往会得到简化. 当割掉i,j,k时,必定附近的要割在k-D到k+D上. 所以只需要建两条inf的边来强制,如果割不掉强制范围内的时候,原来的边一定会换 ...

  6. bzoj3572又TM是网络流

    = =我承认我写网络流写疯了 = =我承认前面几篇博文都是扯淡,我写的是垃圾dinic(根本不叫dinic) = =我承认这道题我调了半天 = =我承认我这道题一开始是T的,后来换上真正的dinic才 ...

  7. hdu3549还是网络流

    最后一次训练模板(比较熟练了) 接下来训练网络流的建图 #include <cstdio> #define INF 2147483647 int n,m,ans,x,y,z,M,h,t,T ...

  8. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

  9. COGS743. [网络流24题] 最长k可重区间集

    743. [网络流24题] 最长k可重区间集 ★★★   输入文件:interv.in   输出文件:interv.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: «编 ...

随机推荐

  1. NB-IoT无线通信模块与Lora无线通信协议技术分析与前景展望

    物联网的快速发展对无线通信技术提出了更高的要求,专为低带宽.低功耗.远距离.大量连接的物联网应用而设计的LPWAN(low-power Wide-Area Network,低功耗广域网)也快速兴起.物 ...

  2. HMS Core 视频编辑服务开放模板能力,助力用户一键Get同款酷炫视频

    前言 短视频模板,是快捷创作短视频的一种方式,一般由专业设计师或模板创作人制作,用户只需替换视频模板中的部分素材,便可生成一支与模板一样的创意视频.这种省时省力.无需"烧脑"构思创 ...

  3. QT5 QSS QML界面美化视频课程系列 QT原理 项目实战 C++1X STL

    QT5 QSS QML界面美化视频课程系列 QT原理 项目实战 C++1X STL 课程1   C语言程序设计高级实用速成课程 基础+进阶+自学 课程2   C语言程序设计Windows GDI图形绘 ...

  4. VR技术赋能五大领域,不止高级,更高效!

    除了VR游戏.VR影视作品,究竟还有哪些产业领域会应用到VR技术并为生活带来改变呢?今天就帮大家好好梳理一下~ VR赋能交通,不只是高级 最近在网上看到了VR考驾照的新闻,网友都赞叹,现在学车都这么高 ...

  5. ms08-067漏洞复现

    一.环境说明 kali linux 靶机是 XP (xp启动445) 二.nmap扫描主机存在的漏洞 root@kali:~# nmap --script smb-vuln* 192.168.244. ...

  6. 【python基础】第08回 流程控制 for循环

    本章内容概要 1.循环结构之 for 循环 本章内容详解 1.循环结构之for循环 1.1 语法结构 for 变量名 in 可迭代对象: #字符串 列表 字典 元组 for 循环的循环体代码 针对变量 ...

  7. git 删除、合并多次commit提交记录

    合并多次记录 1. git log找到要合并的记录的数量. 2. git rebase -i HEAD~5 将最上面一个的记录选为pack,下面记录都改为s. ================= 删除 ...

  8. 10分钟实现dotnet程序在linux下的自动部署

    背景 一直以来,程序署都是非常麻烦且无聊的事情,在公司一般都会有 devops 方案,整个 cicd 过程涉及的工具还是挺多的,搭建起来比较麻烦.那么对于一些自己的小型项目,又不想搭建一套这样的环境, ...

  9. NC17857 起床困难综合症

    NC17857 起床困难综合症 题目 题目描述 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争 ...

  10. Day03 HTML标记

    文本标题 <h1>一级标题</h1> <h2>二级标题</h2> <h3>三级标题</h3> <h4>四级标题< ...