hdu 1517 A Multiplication Game(必胜态,必败态)
A Multiplication Game
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5833 Accepted Submission(s): 3303
Stan wins.
or
Ollie wins.
assuming that both of them play perfectly.
17
34012226
Ollie wins.
Stan wins.
#include <bits/stdc++.h>
using namespace std;
int main()
{
//a数组存的是从小到大所有的乘积
__int64 a[]= {}, min, n;
//p[j]存的是待与j相乘的数的下标
int p[], sg[], i, j, k;
for(i = ; i < ; p[i] = , i++)
;
//从小到大求出所有乘积
for(i = ; i < ; i++) {
//找到最小的乘积
for(j = ,min = -; j < ; j++) {
if(min == - || a[p[j]] * j < a[p[min]] * min) {
min = j;
}
}
a[i] = a[p[min]] * min;// if(a[i] >= ) {
break;
}
//排除相同的乘积
for(j = ; j < ; j++) {
if(a[p[j]]*j == a[i]) {
p[j]++;
}
}
} // for (i = 0; i < 100; ++i) {
// printf("%d ", a[i]);
// } while(scanf("%I64d",&n) != EOF) {
for(i=; i<; i++) {
sg[i] = ;
if(a[i] >= n) {
break;
}
}
for(j = i-; a[j] * >= n && j >= ; j--) {
sg[j] = ;//必胜
}
while(j >= ) {
for(k = j+; k < i && a[j] * >= a[k]; k++)
if(a[k] % a[j] == && sg[k] == ) {//找到一个必败态
sg[j] = ;//必胜
break;
}
j--;
}
puts(sg[] ? "Stan wins." : "Ollie wins.");
}
return ;
}
如果找到规律,也很简单
d.两个人玩游戏,给一个数字n,每次操作可以从2~9中任选一个数字,并把它与p相乘,(游戏开始时p=1)
两人轮流操作,当一个人操作完后p>=n,这个人就是胜者。
s.
①、如果输入是2~9,因为Stan是先手,所以Stan必胜。
②、如果输入是10~18(9*2),因为Ollie是后手,不管第一次Stan乘的是多少,Stan肯定在2~9之间,如果Stan乘以2,那么Ollie就乘以9,那么Ollie乘以大于1的数都能超过10~18中的任何一个数,Ollie必胜。
③、如果输入的是19~162(9*2*9),那么这个范围Stan必胜。
④、如果输入是163~324(9*2*9*2),这个是Ollie的必胜范围。
…………
可以发现必胜态是对称的。
如果“我方”首先给出了一个在N不断除18后的得到不足18的数M,“我方”就可以胜利,然而双方都很聪明,所以这样胜负就决定与N了,如果N不断除18后的得到不足18的数M,如果1<M<=9则先手胜利,即Stan wins.如果9<M<=18则后手胜利。
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; int main(){ //freopen("input.txt","r",stdin); double n; //用long long 就不能AC了,求解。。。。。。。。
while(cin>>n){
while(n>)
n/=;
if(n<=)
printf("Stan wins.\n");
else
printf("Ollie wins.\n");
}
return ;
}
hdu 1517 A Multiplication Game(必胜态,必败态)的更多相关文章
- hdu 1517 A Multiplication Game 段sg 博弈 难度:0
A Multiplication Game Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- hdu 1517 A Multiplication Game 博弈论
思路:求必胜区间和必败区间! 1-9 先手胜 10-2*9后手胜 19-2*9*9先手胜 163-2*2*9*9后手胜 …… 易知右区间按9,2交替出现的,所以每次除以18,直到小于18时就可以直接判 ...
- HDU 1517 A Multiplication Game (博弈)
A Multiplication Game Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- (step8.2.7)hdu 1517(A Multiplication Game——巴什博弈变形)
题目大意:输入一个整数n.谁先报的数大于n,谁就输了.(初始值p == 1 , 后一个人报的数必须在前一个人报的数的基础上乘上(2 ~ 9)之间的任意一个数) 解题思路:巴什博奕的变形 1) 解题思 ...
- HDU 1517:A Multiplication Game
A Multiplication Game Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- HDU 1517 A Multiplication Game 博弈
题目大意:从1开始Stan与Ollie经行博弈,stan先手,每次将当前数乘上(2~9)间的任意数,最后一次操作后大于等于n的人获胜. 题目思路: 1-9 stan 胜 10-18 ollie胜 19 ...
- HDU 1517 A Multiplication Game (SG函数找规律)
题意:两个玩家玩一个游戏,从 p = 1,开始,然后依次轮流选择一个2 - 9的数乘以 p,问你谁先凑够 p >= n. 析:找规律,我先打了一下SG函数的表,然后就找到规律了 我找到的是: 1 ...
- Day11 - Q - A Multiplication Game HDU - 1517
题目链接 本题很像bash博弈,但又有些许不同,因为这里是乘法,我们可以列出前几项可能 若n=2-9,那么first可以一次取完 若n=10-18,无论first怎么取,second都能一次取完 若n ...
- ICG游戏:证明,先手不是必胜就是必败。
简介: ICG游戏:Impartial Combinatorial Games,公平的组合游戏. 以下是定义,来自网络,可能不够严谨: 1.两名选手:2.两名选手轮流行动,每一次行动可以在有限合法操作 ...
随机推荐
- https-SSL请求
# coding:utf-8import requests# 禁用安全请求警告from requests.packages.urllib3.exceptions import InsecureRequ ...
- 《Deep learning》第四章——数值计算
数值计算 机器学习算法通常需要大量的数值计算.这通常是指通过迭代过程更新解的估计值来解决数学问题的算法,而不是通过解析过程推导出公式来提供正确解的方法.常见的操作包括优化(找到最小化或最大化函数值的参 ...
- Oracle学习笔记—Oracle左连接、右连接、全外连接以及(+)号用法(转载)
转载自: Oracle左连接.右连接.全外连接以及(+)号用法 对于外连接,Oracle中可以使用“(+)”来表示. 关于使用(+)的一些注意事项: (+)操作符只能出现在WHERE子句中,并且不能与 ...
- 我的第三个Python小程序
99乘法表: # Author: fansik # Description: 99 times table # method 1 num1 = 0 num2 = 0 while num1 < 9 ...
- 用django写个CMS系统
上一篇介绍过django自带的flatpages,能够做简单的CMS.但是对于我们的真正的工作中的使用意义并不大.还是自己动手写一个吧. 不用说,一定是先从models开始的: from django ...
- 算法题 19 二叉平衡树检查 牛客网 CC150
算法题 19 二叉平衡树检查 牛客网 CC150 实现一个函数,检查二叉树是否平衡,平衡的定义如下,对于树中的任意一个结点,其两颗子树的高度差不超过1. 给定指向树根结点的指针TreeNode* ro ...
- 剑指offer 面试49题
面试49题: 题:丑数 题目:把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N ...
- jQuery:自学笔记(4)——事件与事件对象
jQuery:自学笔记(4)——事件与事件对象 jQuery中的事件 什么是事件 所谓事件,就是被对象识别的操作,即操作对象队环境变化的感知和反应,例如单击按钮或者敲击键盘上的按键. 所谓事件流,是指 ...
- tar软件安装
安装tar ./configure make sudo make install
- PAT 天梯赛 L1-038. 新世界 【水】
题目链接 https://www.patest.cn/contests/gplt/L1-038 AC代码 #include <iostream> #include <cstdio&g ...