A Multiplication Game

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5833    Accepted Submission(s): 3303

Problem Description
Stan and Ollie play the game of multiplication by multiplying an integer p by one of the numbers 2 to 9. Stan always starts with p = 1, does his multiplication, then Ollie multiplies the number, then Stan and so on. Before a game starts, they draw an integer 1 < n < 4294967295 and the winner is who first reaches p >= n.
 
Input
Each line of input contains one integer number n.
 
Output
For each line of input output one line either

Stan wins.

or

Ollie wins.

assuming that both of them play perfectly.

 
Sample Input
162
17
34012226
 
Sample Output
Stan wins.
Ollie wins.
Stan wins.
 
Source
 
 
从最后一个必败态往前找,一直推出初始的状态
 #include <bits/stdc++.h>
using namespace std;
int main()
{
//a数组存的是从小到大所有的乘积
__int64 a[]= {}, min, n;
//p[j]存的是待与j相乘的数的下标
int p[], sg[], i, j, k;
for(i = ; i < ; p[i] = , i++)
;
//从小到大求出所有乘积
for(i = ; i < ; i++) {
//找到最小的乘积
for(j = ,min = -; j < ; j++) {
if(min == - || a[p[j]] * j < a[p[min]] * min) {
min = j;
}
}
a[i] = a[p[min]] * min;// if(a[i] >= ) {
break;
}
//排除相同的乘积
for(j = ; j < ; j++) {
if(a[p[j]]*j == a[i]) {
p[j]++;
}
}
} // for (i = 0; i < 100; ++i) {
// printf("%d ", a[i]);
// } while(scanf("%I64d",&n) != EOF) {
for(i=; i<; i++) {
sg[i] = ;
if(a[i] >= n) {
break;
}
}
for(j = i-; a[j] * >= n && j >= ; j--) {
sg[j] = ;//必胜
}
while(j >= ) {
for(k = j+; k < i && a[j] * >= a[k]; k++)
if(a[k] % a[j] == && sg[k] == ) {//找到一个必败态
sg[j] = ;//必胜
break;
}
j--;
}
puts(sg[] ? "Stan wins." : "Ollie wins.");
}
return ;
}

如果找到规律,也很简单

d.两个人玩游戏,给一个数字n,每次操作可以从2~9中任选一个数字,并把它与p相乘,(游戏开始时p=1)

两人轮流操作,当一个人操作完后p>=n,这个人就是胜者。

s.

①、如果输入是2~9,因为Stan是先手,所以Stan必胜。

②、如果输入是10~18(9*2),因为Ollie是后手,不管第一次Stan乘的是多少,Stan肯定在2~9之间,如果Stan乘以2,那么Ollie就乘以9,那么Ollie乘以大于1的数都能超过10~18中的任何一个数,Ollie必胜。

③、如果输入的是19~162(9*2*9),那么这个范围Stan必胜。

④、如果输入是163~324(9*2*9*2),这个是Ollie的必胜范围。

…………

可以发现必胜态是对称的。

如果“我方”首先给出了一个在N不断除18后的得到不足18的数M,“我方”就可以胜利,然而双方都很聪明,所以这样胜负就决定与N了,如果N不断除18后的得到不足18的数M,如果1<M<=9则先手胜利,即Stan wins.如果9<M<=18则后手胜利。

 #include<iostream>
#include<cstdio>
#include<cstring> using namespace std; int main(){ //freopen("input.txt","r",stdin); double n; //用long long 就不能AC了,求解。。。。。。。。
while(cin>>n){
while(n>)
n/=;
if(n<=)
printf("Stan wins.\n");
else
printf("Ollie wins.\n");
}
return ;
}

hdu 1517 A Multiplication Game(必胜态,必败态)的更多相关文章

  1. hdu 1517 A Multiplication Game 段sg 博弈 难度:0

    A Multiplication Game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  2. hdu 1517 A Multiplication Game 博弈论

    思路:求必胜区间和必败区间! 1-9 先手胜 10-2*9后手胜 19-2*9*9先手胜 163-2*2*9*9后手胜 …… 易知右区间按9,2交替出现的,所以每次除以18,直到小于18时就可以直接判 ...

  3. HDU 1517 A Multiplication Game (博弈)

    A Multiplication Game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  4. (step8.2.7)hdu 1517(A Multiplication Game——巴什博弈变形)

    题目大意:输入一个整数n.谁先报的数大于n,谁就输了.(初始值p  == 1 , 后一个人报的数必须在前一个人报的数的基础上乘上(2 ~ 9)之间的任意一个数) 解题思路:巴什博奕的变形 1) 解题思 ...

  5. HDU 1517:A Multiplication Game

    A Multiplication Game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  6. HDU 1517 A Multiplication Game 博弈

    题目大意:从1开始Stan与Ollie经行博弈,stan先手,每次将当前数乘上(2~9)间的任意数,最后一次操作后大于等于n的人获胜. 题目思路: 1-9 stan 胜 10-18 ollie胜 19 ...

  7. HDU 1517 A Multiplication Game (SG函数找规律)

    题意:两个玩家玩一个游戏,从 p = 1,开始,然后依次轮流选择一个2 - 9的数乘以 p,问你谁先凑够 p >= n. 析:找规律,我先打了一下SG函数的表,然后就找到规律了 我找到的是: 1 ...

  8. Day11 - Q - A Multiplication Game HDU - 1517

    题目链接 本题很像bash博弈,但又有些许不同,因为这里是乘法,我们可以列出前几项可能 若n=2-9,那么first可以一次取完 若n=10-18,无论first怎么取,second都能一次取完 若n ...

  9. ICG游戏:证明,先手不是必胜就是必败。

    简介: ICG游戏:Impartial Combinatorial Games,公平的组合游戏. 以下是定义,来自网络,可能不够严谨: 1.两名选手:2.两名选手轮流行动,每一次行动可以在有限合法操作 ...

随机推荐

  1. https-SSL请求

    # coding:utf-8import requests# 禁用安全请求警告from requests.packages.urllib3.exceptions import InsecureRequ ...

  2. 《Deep learning》第四章——数值计算

    数值计算 机器学习算法通常需要大量的数值计算.这通常是指通过迭代过程更新解的估计值来解决数学问题的算法,而不是通过解析过程推导出公式来提供正确解的方法.常见的操作包括优化(找到最小化或最大化函数值的参 ...

  3. Oracle学习笔记—Oracle左连接、右连接、全外连接以及(+)号用法(转载)

    转载自: Oracle左连接.右连接.全外连接以及(+)号用法 对于外连接,Oracle中可以使用“(+)”来表示. 关于使用(+)的一些注意事项: (+)操作符只能出现在WHERE子句中,并且不能与 ...

  4. 我的第三个Python小程序

    99乘法表: # Author: fansik # Description: 99 times table # method 1 num1 = 0 num2 = 0 while num1 < 9 ...

  5. 用django写个CMS系统

    上一篇介绍过django自带的flatpages,能够做简单的CMS.但是对于我们的真正的工作中的使用意义并不大.还是自己动手写一个吧. 不用说,一定是先从models开始的: from django ...

  6. 算法题 19 二叉平衡树检查 牛客网 CC150

    算法题 19 二叉平衡树检查 牛客网 CC150 实现一个函数,检查二叉树是否平衡,平衡的定义如下,对于树中的任意一个结点,其两颗子树的高度差不超过1. 给定指向树根结点的指针TreeNode* ro ...

  7. 剑指offer 面试49题

    面试49题: 题:丑数 题目:把只包含因子2.3和5的数称作丑数(Ugly Number).例如6.8都是丑数,但14不是,因为它包含因子7. 习惯上我们把1当做是第一个丑数.求按从小到大的顺序的第N ...

  8. jQuery:自学笔记(4)——事件与事件对象

    jQuery:自学笔记(4)——事件与事件对象 jQuery中的事件 什么是事件 所谓事件,就是被对象识别的操作,即操作对象队环境变化的感知和反应,例如单击按钮或者敲击键盘上的按键. 所谓事件流,是指 ...

  9. tar软件安装

    安装tar   ./configure   make   sudo make install

  10. PAT 天梯赛 L1-038. 新世界 【水】

    题目链接 https://www.patest.cn/contests/gplt/L1-038 AC代码 #include <iostream> #include <cstdio&g ...