pat04-树4. Root of AVL Tree (25)
04-树4. Root of AVL Tree (25)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.


Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
平衡二叉树的建立、插入、更新。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
int num;
struct node{
int v,h;
node *l,*r;
node(){
l=r=NULL;
h=;
}
};
int max(int a,int b){
if(a>b){
return a;
}
else{
return b;
}
}
int GetHigh(node *h){
if(!h){
return ;
}
return h->h;
}
void LeftRotation(node *&h){
node *p=h->l;
h->l=p->r;
p->r=h;
h=p;
h->r->h=max(GetHigh(h->r->l),GetHigh(h->r->r))+;
h->h=max(GetHigh(h->l),GetHigh(h->r))+;
}
void RightRotation(node *&h){
node *p=h->r;
h->r=p->l;
p->l=h;
h=p;
h->l->h=max(GetHigh(h->l->l),GetHigh(h->l->r))+;
h->h=max(GetHigh(h->l),GetHigh(h->r))+;
}
void RightLeftRotation(node *&h){
LeftRotation(h->r);
//h->h=max(GetHigh(h->l),GetHigh(h->r))+1;
RightRotation(h);
}
void LeftRightRotation(node *&h){
RightRotation(h->l);
//h->h=max(GetHigh(h->l),GetHigh(h->r))+1;
LeftRotation(h);
}
void AVLInsert(int v,node *&h){
if(!h){//已经到了最底层
h=new node();
h->v=v;
return;
}
//bool can=false;
if(v<h->v){
AVLInsert(v,h->l);
if(GetHigh(h->l)-GetHigh(h->r)==){ //can=true; if(v<h->l->v){//左单旋
LeftRotation(h);
}
else{//左右双旋
LeftRightRotation(h);
}
}
}
else{
AVLInsert(v,h->r);
if(GetHigh(h->l)-GetHigh(h->r)==-){ //can=true; if(v>h->r->v){//左单旋
RightRotation(h);
}
else{//左右双旋
RightLeftRotation(h);
}
}
}
//if(!can)
h->h=max(GetHigh(h->l),GetHigh(h->r))+; //更新树高为1或2的树的树高
}
/*void prefind(node *h){
if(h){
//cout<<11<<endl;
cout<<h->v<<endl;
prefind(h->l);
prefind(h->r);
}
}*/
int main(){
//freopen("D:\\INPUT.txt","r",stdin);
int n;
while(scanf("%d",&n)!=EOF){
node *h=NULL;
int i;
for(i=;i<n;i++){
scanf("%d",&num);
AVLInsert(num,h);
} //prefind(h); //检测 printf("%d\n",h->v);
}
return ;
}
模板:
typedef struct AVLTreeNode *AVLTree;
typedef struct AVLTreeNode{
ElementType Data;
4 AVLTree Left;
AVLTree Right;
int Height;
};
AVLTree AVL_Insertion ( ElementType X, AVLTree T )
{ /* 将 X 插入 AVL 树 T 中,并且返回调整后的 AVL 树 */
if ( !T ) { /* 若插入空树,则新建包含一个结点的树 */
T = (AVLTree)malloc(sizeof(struct AVLTreeNode));
T->Data = X;
T->Height = ;
T->Left = T->Right = NULL;
} /* if (插入空树) 结束 */
else if (X < T->Data) { /* 插入 T 的左子树 */
T->Left = AVL_Insertion(X, T->Left);
if (GetHeight(T->Left) - GetHeight(T->Right) == )
/* 需要左旋 */
if (X < T->Left->Data)
T = SingleLeftRotation(T); /* 左单旋 */
else
T = DoubleLeftRightRotation(T); /* 左-右双旋 */
} /* else if (插入左子树) 结束 */
else if (X > T->Data) { /* 插入 T 的右子树 */
T->Right = AVL_Insertion(X, T->Right);
if (GetHeight(T->Left) - GetHeight(T->Right) == - )
/* 需要右旋 */
if (X > T->Right->Data)
30 T = SingleRightRotation(T); /* 右单旋 */
else
T = DoubleRightLeftRotation(T); /* 右-左双旋 */
} /* else if (插入右子树) 结束 */
/* else X == T->Data,无须插入 */
T->Height = Max(GetHeight(T->Left),GetHeight(T->Right))+;
/*更新树高*/
return T;
}
AVLTree SingleLeftRotation ( AVLTree A )
{ /* 注意: A 必须有一个左子结点 B */
/* 将 A 与 B 做如图 4.35 所示的左单旋,更新 A 与 B 的高度,返回新的根结点 B */
AVLTree B = A->Left;
A->Left = B->Right;
B->Right = A;
A->Height = Max(GetHeight(A->Left), GetHeight(A->Right))+;
B->Height = Max(GetHeight(B->Left), A->Height)+;
return B;
}
AVLTree DoubleLeftRightRotation ( AVLTree A )
{ /* 注意: A 必须有一个左子结点 B,且 B 必须有一个右子结点 C */
/* 将 A、 B 与 C 做如图 4.38 所示的两次单旋,返回新的根结点 C */
A->Left = SingleRightRotation(A->Left); /*将 B 与 C 做右单旋, C 被返回*/
return SingleLeftRotation(A); /*将 A 与 C 做左单旋, C 被返回*/
}
pat04-树4. Root of AVL Tree (25)的更多相关文章
- 04-树4. Root of AVL Tree (25)
04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...
- pat 甲级 1066. Root of AVL Tree (25)
1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...
- PTA 04-树5 Root of AVL Tree (25分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree (25分) An AVL tree ...
- PAT甲级:1066 Root of AVL Tree (25分)
PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...
- pat1066. Root of AVL Tree (25)
1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...
- PAT 甲级 1066 Root of AVL Tree (25 分)(快速掌握平衡二叉树的旋转,内含代码和注解)***
1066 Root of AVL Tree (25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, t ...
- 1066 Root of AVL Tree (25分)(AVL树的实现)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT Advanced 1066 Root of AVL Tree (25) [平衡⼆叉树(AVL树)]
题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...
- PAT 1066. Root of AVL Tree (25)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
随机推荐
- [转]Marshaling a SAFEARRAY of Managed Structures by P/Invoke Part 6.
1. Introduction. 1.1 Starting from part 4 I have started to discuss how to interop marshal a managed ...
- .NET&C#的异常处理
应用程序未捕获异常的处理 处理未捕获的异常是每个应用程序起码有的功能 无论是Windows窗体程序还是WPF程序,我们都看到捕获的异常当中分为"窗体线程异常"和"非窗体线 ...
- SDUT OJ 字典树 AND 静态内存与动态内存
字典树 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Problem Description 遇到单词不认识怎么办? 查字典 ...
- 解决vs code中golang插件依赖安装失败问题
解决vs code中golang插件依赖安装失败问题 Installing github.com/nsf/gocode SUCCEEDED Installing github.com/uudashr/ ...
- Idea 软件使用快捷键归纳
<1>CTRL+P 方法参数提示 <2>ctrl+/ 单行注释 <3>Ctrl+Alt+M IDEA 重复代码快速重构(抽取重复代码快捷键) <4> ...
- PHP 生成 MySql 数据库字典
项目说明 通过配置 MySql 数据库信息,使用 PHP 生成数据表字典可以输出在当前页面,可以生成文件保存在指定位置,也可以下载格式支持网页HTML格式.CSV格式(Excel 读取).ZIP压缩格 ...
- C++_类继承3-动态联编和静态联编
程序调用函数时,将使用哪个可执行代码块呢?编译器负责回答这个问题. 将源代码中的函数调用解释为特定的函数代码块被称为函数名联编(binding). 在C语言中,这非常简单,因为每个函数名对应一个不同的 ...
- nvm安装
1.下载安装包,地址:https://github.com/coreybutler/nvm-windows 2.解压后,点击 nvm-setup 安装,一路默认安装,next下去 3.打开安装位置,然 ...
- Karma+Jasmine测试环境搭建
1.如果你还没安装node的话,去这里下载:http://nodejs.cn/download/,选择跟你电脑匹配的并进行安装,一路next下来就行,路径最好改成自己让自己舒服的,默认的路径可能会很让 ...
- ZOJ - 2042 模运算DP
解法见网上参考 这种只判断可达性的DP一般用bool 除非int能得到更多的信息 #include<iostream> #include<algorithm> #include ...