04-树4. Root of AVL Tree (25)

时间限制
100 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

    

    

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print ythe root of the resulting AVL tree in one line.

Sample Input 1:

5
88 70 61 96 120

Sample Output 1:

70

Sample Input 2:

7
88 70 61 96 120 90 65

Sample Output 2:

88

提交代码

平衡二叉树的建立、插入、更新。

 #include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
int num;
struct node{
int v,h;
node *l,*r;
node(){
l=r=NULL;
h=;
}
};
int max(int a,int b){
if(a>b){
return a;
}
else{
return b;
}
}
int GetHigh(node *h){
if(!h){
return ;
}
return h->h;
}
void LeftRotation(node *&h){
node *p=h->l;
h->l=p->r;
p->r=h;
h=p;
h->r->h=max(GetHigh(h->r->l),GetHigh(h->r->r))+;
h->h=max(GetHigh(h->l),GetHigh(h->r))+;
}
void RightRotation(node *&h){
node *p=h->r;
h->r=p->l;
p->l=h;
h=p;
h->l->h=max(GetHigh(h->l->l),GetHigh(h->l->r))+;
h->h=max(GetHigh(h->l),GetHigh(h->r))+;
}
void RightLeftRotation(node *&h){
LeftRotation(h->r);
//h->h=max(GetHigh(h->l),GetHigh(h->r))+1;
RightRotation(h);
}
void LeftRightRotation(node *&h){
RightRotation(h->l);
//h->h=max(GetHigh(h->l),GetHigh(h->r))+1;
LeftRotation(h);
}
void AVLInsert(int v,node *&h){
if(!h){//已经到了最底层
h=new node();
h->v=v;
return;
}
//bool can=false;
if(v<h->v){
AVLInsert(v,h->l);
if(GetHigh(h->l)-GetHigh(h->r)==){ //can=true; if(v<h->l->v){//左单旋
LeftRotation(h);
}
else{//左右双旋
LeftRightRotation(h);
}
}
}
else{
AVLInsert(v,h->r);
if(GetHigh(h->l)-GetHigh(h->r)==-){ //can=true; if(v>h->r->v){//左单旋
RightRotation(h);
}
else{//左右双旋
RightLeftRotation(h);
}
}
}
//if(!can)
h->h=max(GetHigh(h->l),GetHigh(h->r))+; //更新树高为1或2的树的树高
}
/*void prefind(node *h){
if(h){
//cout<<11<<endl;
cout<<h->v<<endl;
prefind(h->l);
prefind(h->r);
}
}*/
int main(){
//freopen("D:\\INPUT.txt","r",stdin);
int n;
while(scanf("%d",&n)!=EOF){
node *h=NULL;
int i;
for(i=;i<n;i++){
scanf("%d",&num);
AVLInsert(num,h);
} //prefind(h); //检测 printf("%d\n",h->v);
}
return ;
}

模板:

 typedef struct AVLTreeNode *AVLTree;
typedef struct AVLTreeNode{
ElementType Data;
4 AVLTree Left;
AVLTree Right;
int Height;
};
AVLTree AVL_Insertion ( ElementType X, AVLTree T )
{ /* 将 X 插入 AVL 树 T 中,并且返回调整后的 AVL 树 */
if ( !T ) { /* 若插入空树,则新建包含一个结点的树 */
T = (AVLTree)malloc(sizeof(struct AVLTreeNode));
T->Data = X;
T->Height = ;
    T->Left = T->Right = NULL;
} /* if (插入空树) 结束 */
else if (X < T->Data) { /* 插入 T 的左子树 */
    T->Left = AVL_Insertion(X, T->Left);
    if (GetHeight(T->Left) - GetHeight(T->Right) == )
    /* 需要左旋 */
      if (X < T->Left->Data)
        T = SingleLeftRotation(T); /* 左单旋 */
      else
        T = DoubleLeftRightRotation(T); /* 左-右双旋 */
} /* else if (插入左子树) 结束 */
else if (X > T->Data) { /* 插入 T 的右子树 */
    T->Right = AVL_Insertion(X, T->Right);
    if (GetHeight(T->Left) - GetHeight(T->Right) == - )
    /* 需要右旋 */
      if (X > T->Right->Data)
30         T = SingleRightRotation(T); /* 右单旋 */
      else
        T = DoubleRightLeftRotation(T); /* 右-左双旋 */
} /* else if (插入右子树) 结束 */
/* else X == T->Data,无须插入 */
T->Height = Max(GetHeight(T->Left),GetHeight(T->Right))+;
/*更新树高*/
return T;
}
AVLTree SingleLeftRotation ( AVLTree A )
{ /* 注意: A 必须有一个左子结点 B */
  /* 将 A 与 B 做如图 4.35 所示的左单旋,更新 A 与 B 的高度,返回新的根结点 B */
    AVLTree B = A->Left;
    A->Left = B->Right;
    B->Right = A;
    A->Height = Max(GetHeight(A->Left), GetHeight(A->Right))+;
    B->Height = Max(GetHeight(B->Left), A->Height)+;
    return B;
}
AVLTree DoubleLeftRightRotation ( AVLTree A )
{ /* 注意: A 必须有一个左子结点 B,且 B 必须有一个右子结点 C */
  /* 将 A、 B 与 C 做如图 4.38 所示的两次单旋,返回新的根结点 C */
    A->Left = SingleRightRotation(A->Left); /*将 B 与 C 做右单旋, C 被返回*/
    return SingleLeftRotation(A); /*将 A 与 C 做左单旋, C 被返回*/
}

pat04-树4. Root of AVL Tree (25)的更多相关文章

  1. 04-树4. Root of AVL Tree (25)

    04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  2. pat 甲级 1066. Root of AVL Tree (25)

    1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  3. PTA 04-树5 Root of AVL Tree (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree   (25分) An AVL tree ...

  4. PAT甲级:1066 Root of AVL Tree (25分)

    PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...

  5. pat1066. Root of AVL Tree (25)

    1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  6. PAT 甲级 1066 Root of AVL Tree (25 分)(快速掌握平衡二叉树的旋转,内含代码和注解)***

    1066 Root of AVL Tree (25 分)   An AVL tree is a self-balancing binary search tree. In an AVL tree, t ...

  7. 1066 Root of AVL Tree (25分)(AVL树的实现)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  8. PAT Advanced 1066 Root of AVL Tree (25) [平衡⼆叉树(AVL树)]

    题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...

  9. PAT 1066. Root of AVL Tree (25)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

随机推荐

  1. Server Sql 多表查询、子查询和分页

    一.多表查询:根据特定的连接条件从不同的表中获取所需的数据 多表查询语法: SELECT table1.column, table2.column FROM table1, table2 WHERE ...

  2. small cell 在安防领域的应用探讨

    在安防领域,最核心的问题是:如何有效区分“内部人员”与“外部人员”.所谓“有效”包含两点意思,一是安全,尽可能地过滤出“外部人员”.二是效率,即尽可能无干扰地或较小干扰地使“内部人员”通过.所有的安全 ...

  3. C#验证身份证号码正确性

    18位号码: private static bool CheckIDCard18(string Id) { ; ), , ) || '), out n) == false) { return fals ...

  4. 以太坊系列之十四: solidity特殊函数

    solidity中的特殊函数 括号里面有类型和名字的是参数,只有类型是返回值. block.blockhash(uint blockNumber) returns (bytes32): hash of ...

  5. 多线程《八》线程queue

    一 线程queue queue is especially useful in threaded programming when information must be exchanged safe ...

  6. 20165219第4次实验《Android程序设计》实验报告

    20165219第4次实验<Android程序设计>实验报告 一.实验内容及步骤 (一)Android Stuidio的安装Hello world测试 要求 参考http://www.cn ...

  7. javascript点击变绿色再点击变红色

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. HTML5新增的表单元素有哪些?

    表单控:color ,  calendar  ,  date ,  datetime, datetime-local,  time, mouth , week, email, url , search ...

  9. 通过 js 修改 html 的文本内容或者样式

    通过 js 修改 html 的文本内容 <!DOCTYPE html> <html> <head> <meta charset="utf-8&quo ...

  10. Qt 学习之路 2(58):编辑数据库外键

    Qt 学习之路 2(58):编辑数据库外键(skip) 豆子 2013年7月12日 Qt 学习之路 2 13条评论 前面几章我们介绍了如何对数据库进行操作以及如何使用图形界面展示数据库数据.本章我们将 ...