杭电3501Calculation 2 欧拉函数
Calculation 2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2982 Accepted Submission(s): 1231
3
4
0
0
2
对正整数n。欧拉函数是少于或等于n的数中与n互质的数的数目。比如euler(8)=4,由于1,3,5,7均和8互质。
Euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),当中p1,p2……pn为x的全部素因数。x是不为0的整数。
euler(1)=1(唯一和1互质的数就是1本身)。
欧拉公式的延伸:一个数的全部质因子之和是euler(n)*n/2。
那么怎样变成实现欧拉函数呢?以下通过两种不同的方法来实现。
第一种方法是直接依据定义来实现。同一时候第一种方法也是另外一种筛法的基础,当好好理解。
//直接求解欧拉函数
int euler(int n){ //返回euler(n)
int res=n,a=n;
for(int i=2;i*i<=a;i++){
if(a%i==0){
res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出
while(a%i==0) a/=i;
}
}
if(a>1) res=res/a*(a-1);
return res;
} //筛选法打欧拉函数表
#define Max 1000001
int euler[Max];
void Init(){
euler[1]=1;
for(int i=2;i<Max;i++)
euler[i]=i;
for(int i=2;i<Max;i++)
if(euler[i]==i)
for(int j=i;j<Max;j+=i)
euler[j]=euler[j]/i*(i-1);//先进行除法是为了防止中间数据的溢出
}
附ac代码:
#include<stdio.h>
int ac(__int64 n)
{
int res=n;
int a=n;
for(int i=2;i*i<=a;i++)
{
if(a%i==0)
res=res/i*(i-1);
while(a%i==0)
a/=i;
}
if(a>1)
res=res/a*(a-1);
return res;
}
int main()
{
__int64 n,m;
while(scanf("%I64d",&n),n)
{
if(n==1)
printf("0\n");
else
{
__int64 res=ac(n);
m=((n-1)*n/2-n*res/2)%1000000007;//求和公式
printf("%I64d\n",m);
}
}
return 0;
}
杭电3501Calculation 2 欧拉函数的更多相关文章
- hdu 1286:找新朋友(数论,欧拉函数)
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- 【欧拉函数】【HDU1286】 找新朋友
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- 欧拉函数之HDU1286找新朋友
找新朋友 Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Total Submissi ...
- hdu 1286 找新朋友 欧拉函数模版题
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem Des ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- COGS2531. [HZOI 2016]函数的美 打表+欧拉函数
题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...
- poj2478 Farey Sequence (欧拉函数)
Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...
随机推荐
- 移植MonkeyRunner的图片对照和获取子图功能的实现-Appium篇
假设你的目标測试app有非常多imageview组成的话,这个时候monkeyrunner的截图比較功能就体现出来了. 而其它几个流行的框架如Robotium,UIAutomator以及Appium都 ...
- MySQL具体解释(8)----------MySQL线程池总结(二)
这篇文章是对上篇文章的一个补充,主要环绕下面两点展开.one-connection-per-thread的实现方式以及线程池中epoll的使用. one-connection-per-thread 依 ...
- 机器学习 LR中的参数迭代公式推导——极大似然和梯度下降
Logistic本质上是一个基于条件概率的判别模型(DiscriminativeModel). 函数图像为: 通过sigma函数计算出最终结果,以0.5为分界线,最终结果大于0.5则属于正类(类别值为 ...
- Ubuntu开机报错:could not update ICEauthority file /home/user/.ICEauthority(转载)
解决方法如下: 一. 代码:sudo chown $USER:$USER /home/$USER/.ICEauthority sudo chmod 644 /home/$USER/.IC ...
- OEM:Enterprise Manager 无法连接到数据库实例 错误解决
今天遇到了一个Enterprise Manager 无法连接到数据库实例的错误,无法使用OEM,经过检查发现是 SYSMAN用户被锁定了,关于Enterprise Manager 无法连接到数据库实例 ...
- WebService中使用自定义类的解决方法(5种)
转自:http://www.cnblogs.com/lxinxuan/archive/2007/05/24/758317.html Demo下载:http://files.cnblogs.com/lx ...
- Docker容器查看ip地址
第一步:进入centos7容器:yum install net-tools -y 我这里已经加载过,所以没有继续加载 第二步:加载完成之后可以输入 ifconfig查看ip地址
- Android 长按识别图中二维码 zxing
#基于 Zxing, 初学Android 代码质量不高 //长按,通过zxing读取图片,判断是否有二维码 bigImage.setOnLongClickListener(new View.OnLon ...
- IE,表头固定
<html> <head> <title>表头固定</title> <style type="text/css"& ...
- 给大家介绍几个常见的Android代码片段
今天在源码天堂那个网站,也下载了一个不错的Android源码特效,现在分享一下给博客园的朋友吧,个人觉得那个网站还是挺不错的,希望大家能够使用得上. 仿美图秀秀拼图功能源码 仿美图秀秀拼图功能源码,最 ...