题意

https://www.lydsy.com/JudgeOnline/problem.php?id=2595

思路

是一道比较裸的斯坦纳树呢~

题意等价于选出包含一些点的最小生成树,这就是斯坦纳树的功能。

举个例子,给定 \(n\) 个点,其中 \(k\) 个点被称作关键点,\(m\) 条带权边,求原图的一个权值最小的子图,这张子图图为包含这 \(k\) 个点的树。

我们定义 \(dp[i][j]\) 为关键点集合 \(i\) 与任意节点 \(j\) 连通的最小权的树。考虑转移这个 \(dp\) 数组,比较显然的是以下的子集划分:

\[dp[i][j]=\min(dp[k][j]+dp[i\setminus k][j])
\]

其中 \(k\) 是 \(i\) 的子集。

当然这样转移是不够的,在关键点集合 \(i\) 不变的情况下,\(j\) 有可能会发生改变,即发生如下转移:

\[\text{chk_min}(dp[i][k],dp[i][j]+w(j,k))
\]

其中 \(w(j,k)\) 为一条 \(j\) 指向 \(k\) 的边的边权。不难发现,这个过程和最短路的松弛操作是一样的,那么就可以利用最短路进行转移,没有负边就跑 \(\text{dijkstra}\),否则跑 \(\text{spfa}\) 。

这道题求的东西略微不同,是点有点权,不过无所谓,转移稍稍改动即可。然后还要输出方案,那么在 \(dp\) 转移的时候还需要记录从哪里转移过来。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
template<typename T,typename _T>inline bool chk_min(T &x,const _T y){return y<x?x=y,1:0;}
template<typename T,typename _T>inline bool chk_max(T &x,const _T y){return x<y?x=y,1:0;}
typedef long long ll;
template<const int N,const int M,typename T>struct LinkedList
{
int head[N],nxt[M],tot;T to[M];
LinkedList(){clear();}
T &operator [](const int x){return to[x];}
void clear(){memset(head,-1,sizeof(head)),tot=0;}
void add(int u,T v){to[tot]=v,nxt[tot]=head[u],head[u]=tot++;}
#define EOR(i,G,u) for(int i=G.head[u];~i;i=G.nxt[i])
};
struct node
{
int at,path;
bool operator <(const node &_)const{return path>_.path;}
}; LinkedList<103,103*4,int>G;
std::priority_queue<node>Q;
int dp[(1<<10)+3][103];
bool lasknd[(1<<10)+3][103];
int las[(1<<10)+3][103];
bool mark[103];
int mp[103],ori[13];
int pw[103];
int n,m,K; inline int hs(int x,int y){return x*m+y;} void Steiner()
{
FOR(i,0,(1<<K)-1)FOR(j,0,n-1)dp[i][j]=1e9;
FOR(i,0,K-1)dp[1<<i][ori[i]]=0;
FOR(i,1,(1<<K)-1)
{
FOR(j,0,n-1)
for(int k=(i-1)&i;k;k=(k-1)&i)
if(chk_min(dp[i][j],dp[k][j]+dp[i^k][j]-pw[j]))
{
lasknd[i][j]=0;
las[i][j]=k;
}
while(!Q.empty())Q.pop();
FOR(j,0,n-1)Q.push((node){j,dp[i][j]});
while(!Q.empty())
{
node now=Q.top();Q.pop();
int u=now.at;
if(now.path>dp[i][u])continue;
EOR(k,G,u)
{
int v=G[k],w=pw[v];
if(chk_min(dp[i][v],dp[i][u]+w))
{
lasknd[i][v]=1;
las[i][v]=u;
Q.push((node){v,dp[i][v]});
}
}
}
}
} void backtrack(int i,int j)
{
mark[j]=1;
if(mp[j]!=-1&&i==(1<<mp[j]))return;
if(!lasknd[i][j])
backtrack(las[i][j],j),backtrack(i^las[i][j],j);
else backtrack(i,las[i][j]);
} int main()
{
scanf("%d%d",&n,&m);
FOR(i,0,n-1)FOR(j,0,m-1)
{
scanf("%d",&pw[hs(i,j)]);
if(!pw[hs(i,j)])mp[hs(i,j)]=K,ori[K]=hs(i,j),K++;
else mp[hs(i,j)]=-1;
}
FOR(i,0,n-1)FOR(j,0,m-2)
{
G.add(hs(i,j),hs(i,j+1));
G.add(hs(i,j+1),hs(i,j));
}
FOR(i,0,n-2)FOR(j,0,m-1)
{
G.add(hs(i,j),hs(i+1,j));
G.add(hs(i+1,j),hs(i,j));
}
n*=m;
Steiner();
int ans=1e9,id;
FOR(i,0,n-1)if(chk_min(ans,dp[(1<<K)-1][i]))id=i;
backtrack((1<<K)-1,id);
printf("%d\n",ans);
FOR(i,0,n-1)
{
if(!pw[i])putchar('x');
else putchar(mark[i]?'o':'_');
if(i%m==m-1)putchar('\n');
}
return 0;
}

WC 2008 观光计划(斯坦纳树)的更多相关文章

  1. 【BZOJ2595】[Wc2008]游览计划 斯坦纳树

    [BZOJ2595][Wc2008]游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为 ...

  2. Luogu 4294 [WC2008]游览计划 | 斯坦纳树

    题目链接 Luogu 4294 (我做这道题的时候BZOJ全站的SPJ都炸了 提交秒WA 幸好有洛谷) 题解 这道题是[斯坦纳树]的经典例题.斯坦纳树是这样一类问题:带边权无向图上有几个(一般约10个 ...

  3. bzoj2595: [Wc2008]游览计划 斯坦纳树

    斯坦纳树是在一个图中选取某些特定点使其联通(可以选取额外的点),要求花费最小,最小生成树是斯坦纳树的一种特殊情况 我们用dp[i][j]来表示以i为根,和j状态是否和i联通,那么有 转移方程: dp[ ...

  4. BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

    Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2030  Solved: 986[Submit][Status][ ...

  5. BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树

    [题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...

  6. bzoj2595 [Wc2008]游览计划——斯坦纳树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2595 今天刚学了斯坦纳树,还不太会,写一道题练习一下: 参考了博客:http://www.c ...

  7. P4294 [WC2008]游览计划 (斯坦纳树)

    题目链接 差不多是斯坦纳树裸题,不过边权化成了点权,这样在合并两棵子树时需要去掉根结点的权值,防止重复. 题目还要求输出解,只要在转移时记录下路径,然后dfs一遍就好了. #include<bi ...

  8. 【BZOJ-2595】游览计划 斯坦纳树

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1518  Solved: 7 ...

  9. 洛谷4294 [WC2008]游览计划——斯坦纳树

    题目:https://www.luogu.org/problemnew/show/P4294 大概是状压.两种转移,一个是以同一个点为中心,S由自己的子集拼起来:一个是S相同.中心不同的同层转移. 注 ...

随机推荐

  1. LINQ 之 SelectMany

    声明:本文为www.cnc6.cn原创,转载时请注明出处,谢谢! 一.第一种用法: public static IEnumerable<TResult> SelectMany<TSo ...

  2. Entity Framework 6 中如何获取 EntityTypeConfiguration 的 Edm 信息?(二)

    接着上一篇 直接贴代码了: using System; using System.Collections.Generic; using System.Data.Entity; using System ...

  3. k8s服务器内核参数调整

    1. net.bridge.bridge-nf-call-iptables = 1net.bridge.bridge-nf-call-arptables = 1net.bridge.bridge-nf ...

  4. 动画展现十大经典排序算法(附Java代码)

    0.算法概述 0.1 算法分类 十种常见排序算法可以分为两大类: 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序. 非比较类排序: ...

  5. 2019-11-27-WPF-全屏透明窗口

    原文:2019-11-27-WPF-全屏透明窗口 title author date CreateTime categories WPF 全屏透明窗口 lindexi 2019-11-27 09:22 ...

  6. 将Windows网络适配器共享网络的ip:192.168.137.1 改为其他IP

    修改注册表 方法1 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\SharedAccess\Parameters 中的: ScopeAddr ...

  7. 4-consul HTTP API及实践

    其他参考:https://www.cnblogs.com/duanxz/p/9660766.html 原文:https://www.douban.com/note/629645759/ 注意:使用AP ...

  8. Kibana插件开发

    当前开发环境 Kibana版本:7.2 elasticsearch版本:7.2 开发环境安装可参考:https://github.com/elastic/kibana/blob/master/CONT ...

  9. ANDROID培训准备资料之BroadcastReceiver

    BroacastReceiver的启动方式? (1)     创建需要启动的BroadcastReceiver的Intent. (2)     调用context的sendBroadcast()或者s ...

  10. ucoreOS_lab1 实验报告

    由于我个人不太懂 AT&T 语法,在完成实验的过程中遇到了相当大的阻碍,甚至有点怀疑人生,我是否心太大了,妄想在短时间内学懂大清的课程.ucoreOS_lab1 这个实验前前后后做到了现在才勉 ...