题意

https://www.lydsy.com/JudgeOnline/problem.php?id=2595

思路

是一道比较裸的斯坦纳树呢~

题意等价于选出包含一些点的最小生成树,这就是斯坦纳树的功能。

举个例子,给定 \(n\) 个点,其中 \(k\) 个点被称作关键点,\(m\) 条带权边,求原图的一个权值最小的子图,这张子图图为包含这 \(k\) 个点的树。

我们定义 \(dp[i][j]\) 为关键点集合 \(i\) 与任意节点 \(j\) 连通的最小权的树。考虑转移这个 \(dp\) 数组,比较显然的是以下的子集划分:

\[dp[i][j]=\min(dp[k][j]+dp[i\setminus k][j])
\]

其中 \(k\) 是 \(i\) 的子集。

当然这样转移是不够的,在关键点集合 \(i\) 不变的情况下,\(j\) 有可能会发生改变,即发生如下转移:

\[\text{chk_min}(dp[i][k],dp[i][j]+w(j,k))
\]

其中 \(w(j,k)\) 为一条 \(j\) 指向 \(k\) 的边的边权。不难发现,这个过程和最短路的松弛操作是一样的,那么就可以利用最短路进行转移,没有负边就跑 \(\text{dijkstra}\),否则跑 \(\text{spfa}\) 。

这道题求的东西略微不同,是点有点权,不过无所谓,转移稍稍改动即可。然后还要输出方案,那么在 \(dp\) 转移的时候还需要记录从哪里转移过来。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
template<typename T,typename _T>inline bool chk_min(T &x,const _T y){return y<x?x=y,1:0;}
template<typename T,typename _T>inline bool chk_max(T &x,const _T y){return x<y?x=y,1:0;}
typedef long long ll;
template<const int N,const int M,typename T>struct LinkedList
{
int head[N],nxt[M],tot;T to[M];
LinkedList(){clear();}
T &operator [](const int x){return to[x];}
void clear(){memset(head,-1,sizeof(head)),tot=0;}
void add(int u,T v){to[tot]=v,nxt[tot]=head[u],head[u]=tot++;}
#define EOR(i,G,u) for(int i=G.head[u];~i;i=G.nxt[i])
};
struct node
{
int at,path;
bool operator <(const node &_)const{return path>_.path;}
}; LinkedList<103,103*4,int>G;
std::priority_queue<node>Q;
int dp[(1<<10)+3][103];
bool lasknd[(1<<10)+3][103];
int las[(1<<10)+3][103];
bool mark[103];
int mp[103],ori[13];
int pw[103];
int n,m,K; inline int hs(int x,int y){return x*m+y;} void Steiner()
{
FOR(i,0,(1<<K)-1)FOR(j,0,n-1)dp[i][j]=1e9;
FOR(i,0,K-1)dp[1<<i][ori[i]]=0;
FOR(i,1,(1<<K)-1)
{
FOR(j,0,n-1)
for(int k=(i-1)&i;k;k=(k-1)&i)
if(chk_min(dp[i][j],dp[k][j]+dp[i^k][j]-pw[j]))
{
lasknd[i][j]=0;
las[i][j]=k;
}
while(!Q.empty())Q.pop();
FOR(j,0,n-1)Q.push((node){j,dp[i][j]});
while(!Q.empty())
{
node now=Q.top();Q.pop();
int u=now.at;
if(now.path>dp[i][u])continue;
EOR(k,G,u)
{
int v=G[k],w=pw[v];
if(chk_min(dp[i][v],dp[i][u]+w))
{
lasknd[i][v]=1;
las[i][v]=u;
Q.push((node){v,dp[i][v]});
}
}
}
}
} void backtrack(int i,int j)
{
mark[j]=1;
if(mp[j]!=-1&&i==(1<<mp[j]))return;
if(!lasknd[i][j])
backtrack(las[i][j],j),backtrack(i^las[i][j],j);
else backtrack(i,las[i][j]);
} int main()
{
scanf("%d%d",&n,&m);
FOR(i,0,n-1)FOR(j,0,m-1)
{
scanf("%d",&pw[hs(i,j)]);
if(!pw[hs(i,j)])mp[hs(i,j)]=K,ori[K]=hs(i,j),K++;
else mp[hs(i,j)]=-1;
}
FOR(i,0,n-1)FOR(j,0,m-2)
{
G.add(hs(i,j),hs(i,j+1));
G.add(hs(i,j+1),hs(i,j));
}
FOR(i,0,n-2)FOR(j,0,m-1)
{
G.add(hs(i,j),hs(i+1,j));
G.add(hs(i+1,j),hs(i,j));
}
n*=m;
Steiner();
int ans=1e9,id;
FOR(i,0,n-1)if(chk_min(ans,dp[(1<<K)-1][i]))id=i;
backtrack((1<<K)-1,id);
printf("%d\n",ans);
FOR(i,0,n-1)
{
if(!pw[i])putchar('x');
else putchar(mark[i]?'o':'_');
if(i%m==m-1)putchar('\n');
}
return 0;
}

WC 2008 观光计划(斯坦纳树)的更多相关文章

  1. 【BZOJ2595】[Wc2008]游览计划 斯坦纳树

    [BZOJ2595][Wc2008]游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为 ...

  2. Luogu 4294 [WC2008]游览计划 | 斯坦纳树

    题目链接 Luogu 4294 (我做这道题的时候BZOJ全站的SPJ都炸了 提交秒WA 幸好有洛谷) 题解 这道题是[斯坦纳树]的经典例题.斯坦纳树是这样一类问题:带边权无向图上有几个(一般约10个 ...

  3. bzoj2595: [Wc2008]游览计划 斯坦纳树

    斯坦纳树是在一个图中选取某些特定点使其联通(可以选取额外的点),要求花费最小,最小生成树是斯坦纳树的一种特殊情况 我们用dp[i][j]来表示以i为根,和j状态是否和i联通,那么有 转移方程: dp[ ...

  4. BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

    Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2030  Solved: 986[Submit][Status][ ...

  5. BZOJ 2595 [Wc2008]游览计划 ——斯坦纳树

    [题目分析] 斯坦纳树=子集DP+SPFA? 用来学习斯坦纳树的模板. 大概就是用二进制来表示树包含的点,然后用跟几点表示树的形态. 更新分为两种,一种是合并两个子集,一种是换根,换根用SPFA迭代即 ...

  6. bzoj2595 [Wc2008]游览计划——斯坦纳树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2595 今天刚学了斯坦纳树,还不太会,写一道题练习一下: 参考了博客:http://www.c ...

  7. P4294 [WC2008]游览计划 (斯坦纳树)

    题目链接 差不多是斯坦纳树裸题,不过边权化成了点权,这样在合并两棵子树时需要去掉根结点的权值,防止重复. 题目还要求输出解,只要在转移时记录下路径,然后dfs一遍就好了. #include<bi ...

  8. 【BZOJ-2595】游览计划 斯坦纳树

    2595: [Wc2008]游览计划 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1518  Solved: 7 ...

  9. 洛谷4294 [WC2008]游览计划——斯坦纳树

    题目:https://www.luogu.org/problemnew/show/P4294 大概是状压.两种转移,一个是以同一个点为中心,S由自己的子集拼起来:一个是S相同.中心不同的同层转移. 注 ...

随机推荐

  1. 云原生生态周报 Vol. 11 | K8s 1.16 早知道

    业界要闻 Pivotal 发布了完全基于 Kubernetes 的 Pivotal Application Service(PAS)预览版 这意味着 Pivotal 公司一直以来在持续运作的老牌 Pa ...

  2. .NET 跨域问题解决

    后端处理:var callback=context.Request.QueryString["callback"].ToString(); context.Response.Wri ...

  3. Log4Net记录日志(mvc)

    转自:http://blog.csdn.net/zhoufoxcn/article/details/2220533 感谢:柄棋先生 第一步:下载Log4Net 下载地址:http://logging. ...

  4. python 处理中文遇到的编码问题总结 以及 字符str的编码如何判断

    如何处理中午编码的问题 Python的UnicodeDecodeError: 'utf8' codec can't decode byte 0xxx in position 这个错误是因为你代码中的某 ...

  5. 妹纸对网易严选的Bra是什么评价?

    声明:这是一篇超级严肃的技术文章,请本着学习交流的态度阅读,谢谢! 一.网易商品评论爬取 1.评论分析 进入到网易严选官网,搜索“文胸”后,先随便点进一个商品. 在商品页面,打开 Chrome 的控制 ...

  6. NopCommerce源代码分析之用户验证和权限管理

    目录 1.  介绍 2.  UML 2.1  实体类UML图 2.2  业务相关UML图 3.  核心代码分析 3.1  实体类源代码 3.2  业务相关源代码 3.3  相关控制器源代码 3.4  ...

  7. Java面试复习(纯手打)

    1.面向对象和面向过程的区别: 面向过程比面向对象高.因为类调用时需要实例化,开销比较大,比较消耗资源,所以当性能是最重要的考量因素得时候,比如单片机.嵌入式开发.Linux/Unix等一般采用面向过 ...

  8. 前端开发JS——引用类型

    10.流程控制语句      注:var obj = {}:这里的obj转换boolean语句为true   if语句和java是一样的,判断条件也是根据上篇博客提到的假性值 // 弹出一个带输入框的 ...

  9. 解决使用elementUI框架el-upload跨域上传时session丢失问题

    解决方法一: 1.使用elementUI框架el-upload跨域上传时,后端获取不到cookie,后端接口显示未登录,在添加了 with-credentials="true"后依 ...

  10. element-ui的表单验证this.$refs[formName].validate的代码不执行

    经过排查,如果自定义验证中,每种情况都要写明确和有回调函数callback var validatePhone = (rule, value, callback) => { const reg ...