问题描述  

  给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。

  返回被除数 dividend 除以除数 divisor 得到的商。

  示例 1:

  输入: dividend = 10, divisor = 3
  输出: 3

  示例 2:

  输入: dividend = 7, divisor = -3
  输出: -2

  说明:

  • 被除数和除数均为 32 位有符号整数。
  • 除数不为 0。
  • 假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231,  231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。

这个问题涉及到了计算机如何利用逻辑运算和加减法来求得除法,这个问题之前一度困扰了我很久。

  

	/**
* 逼近
* 先定符号
* 结果是正是负还是0?
* @param dividend
* @param divisor
* @return
*/
public static int divide(int dividend, int divisor) {
if (dividend == 0) {
return 0;
}
if (dividend == Integer.MIN_VALUE && divisor == -1) {
return Integer.MAX_VALUE;
}
if (divisor == -1) {
return -dividend;
}
if (divisor == 1) {
return dividend;
}
int res = 0, Sum = 0;
    boolean plus = false;
     //同号
    if ((dividend > 0 && divisor > 0) || (dividend < 0 && divisor < 0)) {
      plus = true;
     }
   //将两个数都变成负数
   dividend = dividend > 0 ? ~dividend + 1 : dividend;
   divisor = divisor > 0 ? ~divisor + 1 : divisor;
  for (int i = 30; i > -1; i--) {
       //被加数未溢出 加之后的结果未溢出 加之后的结果小于被除数
  int addNum = divisor<<i;
  if (addNum>>i == divisor && Sum + addNum < 0 && Sum + addNum >= dividend) {
  Sum += addNum;
  res += plus ? 1<<i : -1<<i;
  }
  }return res;
}

  

   题解(写代码时候的奇怪想法。。。):

    首先进行边界处理之类的。

    一开始我采用了二分法猜数字,首先做一个记号记录结果,然后把被除数(dividend)和除数(divisor)都转换为正数 (信息加工),这样结果就一定是在[0,dividend]。

    初始化left = 0, right = dividend,mid = dividend << 1;

    然后通过for循环累加mid次验证是否符合结果( mid * divisor <= dividend并无法取到比mid更大的mid'去满足前面条件);

    由于平时并不是经常使用二分碰到了以下问题:

      二分的边界问题:

        如何写出不杂乱的代码?

        因为常常使用 mid = (left + right)<<1;

        故而遗忘了mid还可以向右偏 mid = ((left + right)<<1) + 1;。

      因为要保证结果一定在边界内,故而

        left = mid + 1; right = mid - 1;常常不能同时出现(视情况而定吧)。

      所以有时候

        采用 right = mid - 1; left = mid;这个组合时:

        mid = (left + right)<<1; (left + 1 = right) 时候回卡死!

        这个时候要mid  = ((left + right)<<1) + 1;(向右偏)

  当然这样的思路写出来的代码的结果就是我挂了。。

    for循环累加代替乘法实在太慢了!!!

  然鹅,这时候我想到了一个办法。

    divisor * mid 可以写成 divisor (m0 * 2^31 + m1 * 2^30 + m2 * 2^31 ....+m30 * 2^0)

    然后二的m次方这个东西我是可以通过左移来得到的!

    于是我兴奋地用这个方法验证mid对不对。

  发现很多边界问题无法解决

  例如:

    之前说的右偏碰到Integer.MIN_VALUE

    Integer.MIN_VALUE无法转换为正数

    mid取得太大,数据溢出,本来divisor * mid已经超过了Integer.MAX_VALUE。却还是几千。。。

  于是我处于崩溃的边缘。。。

    这样搞下去我要屎了!

  然鹅,解手的时候。我想:

    我可以把所有数都转换为负数先啊

    我可以不用猜测mid是多少啊

    我直接从一步一步逼近被除数就行啦??? 好像真的是。。

    例如 :

      结果如若为101010111...(32位)

    那么我从头开始的非符号位开始看能不能加进去就好啦! 如若能加进去就逼近了被除数,数据本身溢出,加进去溢出,加进去大于被除数就代表不能加!

    其他的都加,反正我要的也是最逼近的数。。。

leetcode 29 两数相除的更多相关文章

  1. Java实现 LeetCode 29 两数相除

    29. 两数相除 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商 ...

  2. Leetcode 29.两数相除 By Python

    给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 1: 输 ...

  3. LeetCode 29 - 两数相除 - [位运算]

    题目链接:https://leetcode-cn.com/problems/divide-two-integers/description/ 给定两个整数,被除数 dividend 和除数 divis ...

  4. [LeetCode]29 两数相除和一个小坑点

    给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 1: 输 ...

  5. LeetCode 29——两数相除

    1. 题目 2. 解答 2.1. 方法一 题目要求不能使用乘法.除法和除余运算,但我们可以将除法转移到对数域. \[ \frac{a}{b} = e^{\frac{lna}{lnb}} = e^{ln ...

  6. leetcode 29两数相除

    我理解本题是考察基于加减实现除法,代码如下: class Solution { public: //只用加减号实现除法, //不用加减号实现除法: int divide(int dividend, i ...

  7. 【剑指 Offer II 001. 整数除法】同leedcode 29.两数相除

    剑指 Offer II 001. 整数除法 解题思路 在计算的时候将负数转化为正数,对于32位整数而言,最小的正数是-2^31, 将其转化为正数是2^31,导致溢出.因此将正数转化为负数不会导致溢出. ...

  8. [LeetCode] 29. Divide Two Integers 两数相除

    Given two integers dividend and divisor, divide two integers without using multiplication, division ...

  9. LeetCode(29): 两数相除

    Medium! 题目描述: 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor ...

随机推荐

  1. 2018.7.16 题解 2018暑假集训之Roads-roads

    题面描述 有标号为1--n的城市与单行道相连.对于每条道路有两个与之相关的参数:道路的长度以及需要支付的费用(用硬币的数量表示) 鲍勃和爱丽丝曾经生活在城市1.在注意到爱丽丝在他们喜欢玩的卡牌游戏中作 ...

  2. 环形缓存RingBuf的几种实现方式(数组,链表),及Disruptor的分析

    先贴个头文件的设计: 首先缓冲区中没有任何数据时,nIdWrite.nIdRead读写下标都为0. 为了判断缓冲区中是否还有数据可读或者可写,我判断的依据是:1)当nIdWrite 等于 nIdRea ...

  3. kuangbin专题 专题一 简单搜索 Fliptile POJ - 3279

    题目链接:https://vjudge.net/problem/POJ-3279 题意:格子有两面,1表示黑色格子,0表示白色格子,奶牛每次可以踩一个格子,踩到的格子和它周围的上下左右格子都会翻面,也 ...

  4. 关于String重写的hashcode的代码分析

    public int hashCode() { int h = hash; if (h == 0 && value.length > 0) { char val[] = valu ...

  5. C# .net Ueditor实现图片上传到阿里云OSS 对象存储

    在学习的时候,项目中需要实现在Ueditor编辑器中将图片上传到云储存中,老师演示的是上传到又拍云存储,既然看了一遍,直接照搬不算本事,咱们可以依葫芦画瓢自己来动手玩玩其它的云存储服务. 现在云计算产 ...

  6. 启动Chrome时自动开启开发者模式

    右键点击Google Chrome浏览器图标→属性,在目标里面加上参数--auto-open-devtools-for-tabs即可

  7. panic: time: missing Location in call to Time.In

    docker容器发布go项目出现以下问题: panic: time: missing Location in call to Time.In COPY --from=build /usr/share/ ...

  8. 数据结构-哈夫曼树(python实现)

    好,前面我们介绍了一般二叉树.完全二叉树.满二叉树,这篇文章呢,我们要介绍的是哈夫曼树. 哈夫曼树也叫最优二叉树,与哈夫曼树相关的概念还有哈夫曼编码,这两者其实是相同的.哈夫曼编码是哈夫曼在1952年 ...

  9. JAVA 使用 POI进行读取Excel表格示例

    导包 编码 public class PoiTest { /** * 最终效果 * 表头一内容0 表头二内容1 表头三内容2 表头一内容1 表头二内容2 表头三内容3 表头一内容2 表头二内容3 表头 ...

  10. vue系列---vue项目(已安装vuex)中引入jquery

    vue项目中引入jquery有很多方法,这只是其中一种. 步骤如下: 1,安装jquery依赖 npm install jquery --save 如果是使用淘宝镜像则将npm改为cnpm 2,修改配 ...