扩展欧几里得算法详解(exgcd)
一、前言
本博客适合已经学会欧几里得算法的人食用~~~
二、扩展欧几里得算法
为了更好的理解扩展欧几里得算法,首先你要知道一个叫做贝祖定理的玄学定理: 即如果a、b是整数,那么一定存在整数x、y使得$ax+by=gcd(a,b)$。
通俗的说就是:如果$ax+by=c$有解,那么$c\%gcd(a,b)=0$
扩展欧几里得算法就是来求解$ax+by=c$这个方程的(判断有无解仅需使用欧几里得算法即可)。
我们不妨从递归到底的情况来入手。
当$b==0$时,显然有:
$\begin{cases}x=1\\y=0\end{cases}$
为一组合法解
问题是如何解决不是递归最底层的情况。
考虑往下递归时候的操作,不妨设本层的$a$为$a_1$,$b$为$b_1$下一层的$a$为$a_2$,$b$为$b_2$
结合gcd的递归过程,显然有$a_2=b_1,b_2=a_1\%b_1$
由于递归算法总是先get到下层的解,因此我们可以直接设$a_2x_2+b_2y_2=gcd(a_2,b_2)$的解为$x_2,y_2$
然后我们来思考如何根据下层解得到上层的解。
考虑取余运算的性质:显然有:$a\%b=a-(\lfloor a\div b\rfloor)*b$
然后我们把这个结论套进刚刚的式子中,用$a_1$和$b_1$替换$a_2$和$b_2$,这个过程大概是这个样子的:
$a_2x_2+b_2y_2=gcd(a_2,b_2)\\=>b_1x_2+(a_1\%b_1)y_2=gcd(a_2,b_2)\\=>b_1x_2+(a_1-a_1\div b_1*b_1)y_2=gcd(a_2,b_2)\\=>b_1x_2+a_1y_2-(a_1\div b_1)b_1y_2=gcd(a_2,b_2)\\=>a_1y_2+b_1(x_2-a_1\div b_1*y_2)=gcd(a_2,b_2)$
经过以上非常基础的推算,我们可以得到$a_1,b_1,x_1,y_1,x_2,y_2$如下的关系:
$\begin{cases}x_1=y_2\\y_1=x_2-a_1\div b_1*y_2\end{cases}$
于是递归计算即可。
exgcd的代码实现大概长这样:
void exgcd(int a,int b,int &x,int &y)
{
if(b==)
{
x=;y=;
return;
}
exgcd(b,a%b,x,y);
int x1=x,y1=y;
x=y1;y=x1-a/b*y1;
}
exgcd代码实现
三、例题分析
这道题开门见山,直接就说出了要求什么,可谓NOIP茫茫毒瘤题中一股清流
我们要求的是$ax≡1 (mod b)$,不妨设$ax+by=1$,接下来我们就可以搬出我们的exgcd的模板,轻松秒掉这道题。
值得注意的是,我们求出来的是最小解,而题目要求的是最小正整数解,因此如果不符合条件的话还要往上累加。
#include<iostream>
#include<cstdio>
#define int long long
using namespace std;
int x,y,a,b;
void exgcd(int a,int b,int &x,int &y)
{
if(b==)
{
x=;y=;
return;
}
exgcd(b,a%b,x,y);
int x1=x,y1=y;
x=y1;y=x1-a/b*y1;
}
signed main()
{
cin>>a>>b;
exgcd(a,b,x,y);
while(x<)x=(x+b)%b;
cout<<x<<endl;
return ;
}
洛谷P1082同余方程
(贝祖定理内容部分来自这位大佬的博客)
扩展欧几里得算法详解(exgcd)的更多相关文章
- 欧几里得算法与扩展欧几里得算法_C++
先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...
- 详解扩展欧几里得算法(扩展GCD)
浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经 ...
- 浅谈扩展欧几里得算法(exgcd)
在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...
- gcd(欧几里得算法)与exgcd(扩展欧几里得算法)
欧几里得算法: 1.定义:gcd的意思是最大公约数,通常用扩展欧几里得算法求 原理:gcd(a, b)=gcd(b, a%b) 2.证明: 令d=gcd(a, b) => a=m*d,b=n ...
- 扩展欧几里得算法(EXGCD)学习笔记
0.前言 相信大家对于欧几里得算法都已经很熟悉了.再学习数论的过程中,我们会用到扩展欧几里得算法(exgcd),大家一定也了解过.这是本蒟蒻在学习扩展欧几里得算法过程中的思考与探索过程. 1.Bézo ...
- 模板——扩展欧几里得算法(求ax+by=gcd的解)
Bryce1010模板 /**** *扩展欧几里得算法 *返回d=gcd(a,b),和对应等式ax+by=d中的x,y */ long long extend_gcd(long long a,long ...
- vijos1009:扩展欧几里得算法
1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...
- 『扩展欧几里得算法 Extended Euclid』
Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...
- 【learning】 扩展欧几里得算法(扩展gcd)和乘法逆元
有这样的问题: 给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数. 数据范围$a,b≤10^ ...
随机推荐
- CSP2019 题解
CSP2019 题解 D1T1 格雷码(code) 题目传送门 https://loj.ac/problem/3208 题解 按照题意模拟就可以了. 对于第 \(i\) 位,如果 \(k \geq 2 ...
- 2017年cocoaPods 1.2.1升级
还在用老版本的ccoaPods,安装三方库时,会报错 : [!] Invalid `Podfile` file: [!] The specification of `link_with` in the ...
- 洛谷p3955 图书管理员(NOIP2017 t2)
蒟蒻的最后一篇pas题解...目前转c++ ing 回顾了一下,发现c++的string真的好繁啊(主要我这个蒟蒻太菜不会用) 还是pas的string操作简洁 做法 我这种蒟蒻不像别的dalao,懒 ...
- JavaScript method overload
https://stackoverflow.com/questions/2187666/help-with-js-and-functions-parameters JavaScript doesn' ...
- React-Native 之 GD (一)目录结构与第三方框架使用与主题框架搭建
1.APP效果图 2.工程环境配置 IOS: 将压缩包内的 Images.xcassets 文件夹直接替换掉我们iOS工程中的 Images.xcassets 文件夹. 这时候我们可以看到所有图片资源 ...
- Python编程:从入门到实践—变量和简单数据类型
变量的命名和使用 #!/usr/bin/env python# -*- encoding:utf-8 -*- message ="Hello Python world!"print ...
- fedora23然后创建workspace?或者说是panel面板?
好像在fedora23中 无法再添加工作空间workspace. 系统会自动的在非空工作空间后面再生成一个空的工作空间. 而且 工作空间 好像不只 4个, 可以有很多个. panel面板好像也不能添加 ...
- JS-Array.prototype 中的方法的坑
fill() 今天刷 HackerRank 的题遇到需要创建链表数组(一维数组的每一项是个链表)的题. 众所周知 JS 中的数组可以当链表用,我就用如下代码进行创建 let seqs = (new A ...
- 002-使用Spring实现读写分离(MySQL实现主从复制)
一. 背景 一般应用对数据库而言都是“读多写少”,也就说对数据库读取数据的压力比较大主库,负责写入数据,我们称之为:写库:从库,负责读取数据,我们称之为:读库: 1. 读库和写库的数据一致:2. 写数 ...
- RocketMQ 创建和删除 topic,以及 broker 和 nameserver 之间的心跳
命令行主类:org.apache.rocketmq.tools.command.MQAdminStartup 客户端创建 topic 程序参数:updateTopic -n localhost:987 ...