[BZOJ2839]:集合计数(组合数学+容斥)
题目传送门
题目描述
一个有N个元素的集合有${2}^{N}$个不同子集(包含空集),现在要在这${2}^{N}$个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
输入格式
一行两个整数N,K。
输出格式
一行为答案。
样例
样例输入:
3 2
样例输出:
6
样例说明
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
数据范围与提示
对于100%的数据,1≤N≤16;0≤K≤N;
题解
我也不知道为什么看到这道题就像到了组合数学和容斥,别问我为什么。
好叭~既然你这么可爱……那就……
其实,我感觉叭……这种什么什么集合的题,要是你一秒想不出来什么算法,就往容斥去想吧,个人感觉基本上就是容斥了。
反正是容斥你就赚了,不是你也不亏(反正你也不会,不不不,您是最神的)。
言归正转(其实刚才也不是废话叭~):
首先是组合数学,既然自己很执着就往组合数学上去想吧。
显然,问题可以转化为先在n个数里选k个,然后在剩下的数中选出任意多个集合,使他们的交集为空集即可。
这时候答案即为:ans=(一堆数,我也不知道有多大)×$C_{n}^{k}$。
然后“我也不知道有多大”的数看样子很难求,它们会组成${2}^{n-k}$个集合,然后你还要从这些集合当中去选,让它们没有交集,那我估计你有钱的话可以让它先跑着,自己冷冻个几百年没准它能算完?不好说~
那么显然不能这样,怎么办?
我说了还有容斥。
那么我们考虑让它们的交集为i(i=[k,n],i∈N*)。
从这n个元素中选出i个元素,剩下的n-i个元素可以组成${2}^{n-i}$个不同的集合,然后这些集合还有${2}^{{2}^{n-i}}$-1种组合,-1是因为我们不能什么也不选。
方案数即为$C_{n}^{i}$×$C_{i}^{k}$×(${2}^{{2}^{n-i}}$-1)。
这时候就要考虑我们伟大的容斥了,奇加偶减即可。
代码时刻
#include<bits/stdc++.h>
using namespace std;
long long n,k;
long long ans;
long long jc[1000005],inv[1000005];
long long qpow(long long x,long long y,long long mod)//快速幂
{
long long ans=1;
while(y)
{
if(y%2)ans=(ans*x)%mod;
y>>=1;
x=(x*x)%mod;
}
return ans;
}
void pre_work()//预处理
{
jc[0]=1;
for(long long i=1;i<=1000000;i++)
jc[i]=(jc[i-1]*i)%1000000007;
inv[1000000]=qpow(jc[1000000],1000000005,1000000007);
for(long long i=999999;i>=0;i--)
inv[i]=(inv[i+1]*(i+1))%1000000007;
}
long long cm(long long n,long long m){return jc[n]*inv[m]%1000000007*inv[n-m]%1000000007;}//求C
int main()
{
pre_work();
scanf("%lld%lld",&n,&k);
int flag=1;//用来奇加偶减
for(long long i=k;i<=n;i++)
{
ans=(ans+(((cm(n,i)*cm(i,k))%1000000007*(qpow(2,qpow(2,n-i,1000000006),1000000007)-1))%1000000007)*flag%1000000007)%1000000007;//式子,注意容斥
flag=-flag;
}
cout<<(ans+1000000007)%1000000007;//因为最后一步可能是一个减,所以注意要+mod再%mod
return 0;
}
rp++
[BZOJ2839]:集合计数(组合数学+容斥)的更多相关文章
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- bzoj2839 集合计数(容斥+组合)
集合计数 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- 【BZOJ2839】集合计数(容斥,动态规划)
[BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...
- 【BZOJ2839】集合计数 组合数+容斥
[BZOJ2839]集合计数 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数 ...
- BZOJ 2839: 集合计数 广义容斥
在一个 $N$ 个元素集合中的所有子集中选择若干个,且交集大小为 $k$ 的方案数. 按照之前的套路,令 $f[k]$ 表示钦定交集大小为 $k$,其余随便选的方案数. 令 $g[k]$ 表示交集恰好 ...
- BZOJ2839:集合计数(容斥,组合数学)
Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007. ...
- bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] ...
- BZOJ2839 集合计数 容斥
题目描述(权限题qwq) 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模100000000 ...
随机推荐
- 洛谷 P1417 烹调方案 题解
题面 这道题是一道典型的排序dp a[i]−b[i]∗(t+c[i])+a[j]−b[j]∗(t+c[i]+c[j]) a[j]−b[j]∗(t+c[j])+a[i]−b[i]∗(t+c[i]+c[j ...
- 列出连通集(DFS及BFS遍历图) -- 数据结构
题目: 7-1 列出连通集 (30 分) 给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集.假设顶点从0到N−1编号.进行搜索时,假设我们总是从编号最小的顶点出发,按编号递 ...
- hadoop-组件
hadoop1.x 和 hadoop2.x 区别 HDFS 分布式文件存储系统 优点 缺点 MapReduce 分布式计算 详见我的博客 mapreduce YARN 计算资源管理器 主要了解两个 ...
- APT高持续渗透攻击-后门篇
APT是指高级持续性威胁, 利用先进的攻击手段对特定目标进行长期持续性网络攻击的攻击形式,APT攻击的原理相对于其他攻击形式更为高级和先进,其高级性主要体现在APT在发动攻击之前需要对攻击对象的业务流 ...
- vlang
参考 V语言中文教程 - 基础部分
- chrome插件2
转自:http://www.codeceo.com/article/15-chrome-extension.html 1. Web Developer 支持Chrome的Web Developer扩展 ...
- 获取url中参数值
function GetRequest() {var url = window.location.href; //获取url中"?"符后的字串var theRequest = ne ...
- Java面试总结 -2018(补录)
参考详见:https://blog.csdn.net/jackfrued/article/details/44921941 https://blog.csdn.net/jackfrued/articl ...
- idea 导出可以直接运行的jar 文件
刚开始采用的maven插件是 <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId ...
- squid之------常用配置及选项
Squid常用命令 1.初始化在squid.conf里配置的cache目录 squid -z 2.对squid.conf排错,即验证squid.conf的语法和配置 squid -k parse 3. ...