算法具体可以参照其他的博客:

随机梯度下降:

# coding=utf-8
'''
随机梯度下降
'''
import numpy as np # 构造训练数据
x = np.arange(0., 10., 0.2)
m = len(x)
x0 = np.full(m, 1.0)
input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量
target_data = 3 * x + 8 + np.random.randn(m) max_iter = 10000 # 最大迭代次数
epsilon = 1e-5 # 初始化权值
w = np.random.randn(2)
# w = np.zeros(2) alpha = 0.001 # 步长
diff = 0.
error = np.zeros(2)
count = 0 # 循环次数 print '随机梯度下降算法'.center(60, '=') while count < max_iter:
count += 1
for j in range(m):
diff = np.dot(w, input_data[j]) - target_data[j] # 训练集代入,计算误差值
# 这里的随机性表现在:一个样本更新一次参数!
w = w - alpha * diff * input_data[j] if np.linalg.norm(w - error) < epsilon: # 直接通过np.linalg包求两个向量的范数
break
else:
error = w
print 'loop count = %d' % count, '\tw:[%f, %f]' % (w[0], w[1])
# coding=utf-8
"""
批量梯度下降
"""
import numpy as np # 构造训练数据
x = np.arange(0., 10., 0.2)
m = len(x)
x0 = np.full(m, 1.0)
input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量
target_data = 3 * x + 8 + np.random.randn(m) # 停止条件
max_iter = 10000
epsilon = 1e-5 # 初始化权值
w = np.random.randn(2)
# w = np.zeros(2) alpha = 0.001 # 步长
diff = 0.
error = np.zeros(2)
count = 0 # 循环次数 while count < max_iter:
count += 1 sum_m = np.zeros(2) for i in range(m):
dif = (np.dot(w, input_data[i]) - target_data[i]) * input_data[i]
sum_m = sum_m + dif
'''
for j in range(m):
diff = np.dot(w, input_data[j]) - target_data[j] # 训练集代入,计算误差值
w = w - alpha * diff * input_data[j]
'''
w = w - alpha * sum_m if np.linalg.norm(w - error) < epsilon:
break
else:
error = w
print 'loop count = %d' % count, '\tw:[%f, %f]' % (w[0], w[1])

小批量梯度下降:

# coding=utf-8
"""
小批量梯度下降
"""
import numpy as np
import random # 构造训练数据
x = np.arange(0., 10., 0.2)
m = len(x)
x0 = np.full(m, 1.0)
input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量
target_data = 3 * x + 8 + np.random.randn(m) # 两种终止条件
max_iter = 10000
epsilon = 1e-5 # 初始化权值
np.random.seed(0)
w = np.random.randn(2)
# w = np.zeros(2) alpha = 0.001 # 步长
diff = 0.
error = np.zeros(2)
count = 0 # 循环次数 while count < max_iter:
count += 1 sum_m = np.zeros(2)
index = random.sample(range(m), int(np.ceil(m * 0.2)))
sample_data = input_data[index]
sample_target = target_data[index] for i in range(len(sample_data)):
dif = (np.dot(w, input_data[i]) - target_data[i]) * input_data[i]
sum_m = sum_m + dif w = w - alpha * sum_m if np.linalg.norm(w - error) < epsilon:
break
else:
error = w
print 'loop count = %d' % count, '\tw:[%f, %f]' % (w[0], w[1])

通过迭代,结果会收敛到8和3:

loop count =      w:[8.025972, 2.982300]

参考:http://www.cnblogs.com/pinard/p/5970503.html

SGD/BGD/MBGD使用python简单实现的更多相关文章

  1. 深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

    在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论 ...

  2. 【深度学习】深入理解优化器Optimizer算法(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)

    在机器学习.深度学习中使用的优化算法除了常见的梯度下降,还有 Adadelta,Adagrad,RMSProp 等几种优化器,都是什么呢,又该怎么选择呢? 在 Sebastian Ruder 的这篇论 ...

  3. Python简单爬虫入门三

    我们继续研究BeautifulSoup分类打印输出 Python简单爬虫入门一 Python简单爬虫入门二 前两部主要讲述我们如何用BeautifulSoup怎去抓取网页信息以及获取相应的图片标题等信 ...

  4. Python简单爬虫入门二

    接着上一次爬虫我们继续研究BeautifulSoup Python简单爬虫入门一 上一次我们爬虫我们已经成功的爬下了网页的源代码,那么这一次我们将继续来写怎么抓去具体想要的元素 首先回顾以下我们Bea ...

  5. 亲身试用python简单小爬虫

    前几天基友分享了一个贴吧网页,有很多漂亮的图片,想到前段时间学习的python简单爬虫,刚好可以实践一下. 以下是网上很容易搜到的一种方法: #coding=utf-8 import urllib i ...

  6. GJM : Python简单爬虫入门(二) [转载]

    感谢您的阅读.喜欢的.有用的就请大哥大嫂们高抬贵手"推荐一下"吧!你的精神支持是博主强大的写作动力以及转载收藏动力.欢迎转载! 版权声明:本文原创发表于 [请点击连接前往] ,未经 ...

  7. Selenium + PhantomJS + python 简单实现爬虫的功能

    Selenium 一.简介 selenium是一个用于Web应用自动化程序测试的工具,测试直接运行在浏览器中,就像真正的用户在操作一样 selenium2支持通过驱动真实浏览器(FirfoxDrive ...

  8. 【美妙的Python之中的一个】Python简单介绍及环境搭建

    美妙的Python之Python简单介绍及安装         简而言之: Python 是能你无限惊喜的语言,与众不同.             1.Python:                  ...

  9. python 简单图像识别--验证码

    python  简单图像识别--验证码 记录下,准备工作安装过程很是麻烦. 首先库:pytesseract,image,tesseract,PIL windows安装PIL,直接exe进行安装更方便( ...

随机推荐

  1. Neo4j--常用的查询语句

    参考 https://www.w3cschool.cn/neo4j 准备工作 插入一堆朝代节点 插入我大明皇帝节点 创建大明皇帝统治大明王朝的关系 看一下结果 WHERE WHERE 语法 WHERE ...

  2. GIT 操作文档

    https://git-scm.com/book/en/v2 安装git地址:https://git-scm.com/downloads 一.初始化设置 1.设置你用户名称与邮件地址(每一个 Git ...

  3. 连接数据库方法2-DBCP

    DBCP(连接池): 解决对数据库建立以及关闭连接时消耗大量资源的解决方案. 程序创建和关闭对数据库连接时会消耗大量的资源,连接池技术帮我们 在程序运行的开始时就预先创建大量的连接,这些连接组成一个池 ...

  4. 11. react 基础 使用charles 模拟接口数据

    charles参考文档 charles官网 模拟数据 模拟 axios 请求的数据 eg: 1. 编写 axios 请求 axios.get('/api/xxx') .then(()=>{ale ...

  5. html+css新特性

    audio 音频 viedeo  视频 <audio src = ""02.pogg" controls = "controls"> lo ...

  6. CommandNotFoundError: No command 'conda conda'.

    出现情形 当前conda版本:4.6.11 当使用git bash,无论是在vscode中,还是在桌面上打开bash,都会出现这个错误.但是在cmd中,就可以识别conda命令. 解决 该错误只在4. ...

  7. YouTube推出慈善组合工具,能引国内视频网站跟风吗?

    互联网的出现不仅仅让大众的工作和生活更便利,更深度改变着传统事物的形态,让其被更多人广泛地认知并接触到.如,原本在线下通过彩页.手册.横幅等进行宣传.募捐的慈善,就通过互联网展现出更为强大的影响力.而 ...

  8. matlab 高级

    绘图 条形图 x = [1:10]; y = [75, 58, 90, 87, 50, 85, 92, 75, 60, 95]; bar(x,y), xlabel('Student'),ylabel( ...

  9. delphpi tcp 服务和客户端 例子

    //服务器端unit Unit1; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, ...

  10. 跨站脚本(XSS)攻击

    https://blog.csdn.net/extremebingo/article/details/81176394