[问题2014S13]  (1)  设 \(A\) 是数域 \(\mathbb{K}\) 上的 \(n\) 阶非异阵, 若存在主对角元全为 \(1\) 的下三角阵 \(L\in M_n(\mathbb{K})\) 以及上三角阵 \(U\in M_n(\mathbb{K})\) 使得 \(A=LU\), 则称方阵 \(A\) 存在 \(LU\) 分解 (\(L\) 表示下三角, \(U\) 表示上三角). 证明: \(n\) 阶非异阵 \(A\) 存在 \(LU\) 分解的充分必要条件是 \(A\) 的 \(n\) 个顺序主子式都不等于零. 此时, \(A\) 的 \(LU\) 分解是唯一的.

(2)  设 \(A\) 是 \(n\) 阶正定实对称阵, 证明: 存在唯一的主对角元全大于零的上三角阵 \(C\in M_n(\mathbb{R})\) 使得 \(A=C'C\). 正定实对称阵 \(A\) 的上述分解称为 Cholesky 分解.

[问题2014S13] 复旦高等代数II(13级)每周一题(第十三教学周)的更多相关文章

  1. [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)

    问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...

  2. [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)

    [问题2014S09]  证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...

  3. [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)

    问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...

  4. [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)

    [问题2015S01]  设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...

  5. [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)

    [问题2015S08]  设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...

  6. [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)

    [问题2014A07]  设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...

  7. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  8. [问题2014S06] 复旦高等代数II(13级)每周一题(第六教学周)

    [问题2014S06]  试用有理标准型理论证明13级高等代数I期末考试最后一题: 设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间,  \(\varphi\) 为 \(V\) 上的线 ...

  9. [问题2014S03] 复旦高等代数II(13级)每周一题(第三教学周)

    [问题2014S03]  设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, ...

随机推荐

  1. window下从python开始安装科学计算环境

    Numpy等Python科学计算包的安装与配置 参考: 1.下载并安装 http://www.jb51.net/article/61810.htm 1.安装easy_install,就是为了我们安装第 ...

  2. Android课程---用进度条改变图片透明度

    <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...

  3. EmguCV 阈值化

    一.public static double cvThreshold( IntPtr src, IntPtr dst, double threshold, double maxValue, //Max ...

  4. Oracle中用户的基本操作

    创建用户 1.首先登陆到系统用户sys(sys用户具有创建用户的权限). 2.然后在代码编辑框写入创建用户的代码. 语法:CREATE USER user_name IDENTIFIED BY pas ...

  5. asp.net页面间传值方式

    使用asp.net开发项目,必然会在页面间进行传值,本文介绍几种常见的页面传值方式,仅作笔记,以便后续查找使用. 前提:新建两个页面:ValuePage.aspx,ObtainValue.aspx,本 ...

  6. lc.exe已退出代码为1

    1.把项目文件夹下Properties文件夹下的licenses.licx文件删除,重新编译即可: 2.文本方式打开*.csproj文件,在文件中查找licenses.licx字样,删除对应节点. 之 ...

  7. GitLab + Jenkins + Docker + Kubernetes。

    目前方案是GitLab + Jenkins + Docker + Kubernetes. 方案的工作流程如下:首先,开发人员提交代码代码提交:随后,GitLab 会自动触发Jenkins job,Je ...

  8. 产生0-9 A-Z a-z

    >题目要求: >>产生26个大写字母 >>产生26个小写字母 >>产生0-9这10个阿拉伯数字 >程序实现: package cn.fury.test; ...

  9. raspberry pi

    1. Expend System (sudo raspi-config) 2. Change keybaord layout to 104 key (US) 3. Change update sour ...

  10. 树的Prufer 编码和最小生成树计数

      Prufer数列 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2.它可以通过简单的迭代方 ...