Description

如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus)。

所谓简单回路就是指在图上不重复经过任何一个顶点的回路。

举例来说,上面的第一个例子是一张仙人图,而第二个不是——注意到它有三条简单回路:

(4,3,2,1,6,5,4)、(7,8,9,10,2,3,7)以及(4,3,7,8,9,10,2,1,6,5,4),

而(2,3)同时出现在前两个的简单回路里。另外,第三张图也不是仙人图,因为它并不是连通图。

显然,仙人图上的每条边,或者是这张仙人图的桥(bridge),或者在且仅在一个简单回路里,两者必居其一。

定义在图上两点之间的距离为这两点之间最短路径的距离。定义一个图的直径为这张图相距最远的两个点的距离。

现在我们假定仙人图的每条边的权值都是1,你的任务是求出给定的仙人图的直径。

Input

输入的第一行包括两个整数n和m(1≤n≤50000以及0≤m≤10000)。其中n代表顶点个数,我们约定图中的顶点将从1到n编号。

接下来一共有m行。代表m条路径。每行的开始有一个整数k(2≤k≤1000),代表在这条路径上的顶点个数。

接下来是k个1到n之间的整数,分别对应了一个顶点,相邻的顶点表示存在一条连接这两个顶点的边。

一条路径上可能通过一个顶点好几次,比如对于第一个样例,第一条路径从3经过8,又从8返回到了3,但是我们保证所有的边都会出现在某条路径上,而且不会重复出现在两条路径上,或者在一条路径上出现两次。

Output

只需输出一个数,这个数表示仙人图的直径长度。

Sample Input

15 3
9 1 2 3 4 5 6 7 8 3
7 2 9 10 11 12 13 10
5 2 14 9 15 10 8
10 1
10 1 2 3 4 5 6 7 8 9 10

Sample Output

8
9

HINT

对第一个样例的说明:如图,6号点和12号点的最短路径长度为8,所以这张图的直径为8。

【注意】使用Pascal语言的选手请注意:你的程序在处理大数据的时候可能会出现栈溢出。
如果需要调整栈空间的大小,可以在程序的开头填加一句:{$M 5000000},其中5000000即
指代栈空间的大小,请根据自己的程序选择适当的数值。

Solution

如果只是求一颗树的直径的$DP$,应该是都会的,只需要记录一下$f[x]$表示从$x$点往下的最深深度就可以了。

现在把问题搬到仙人掌上,说道仙人掌就想到圆方树。今年下半年……

对于圆点,我们还是可以用$f$数组直接计算的。但是对于方点,相当于我们要求必须经过环的一颗基环树的直径。也就是求$f[i]+f[j]+dis(i,j)$的最大值,这个可以将环倍长用一个单调队列做。

稍微具体一点就是用单调队列维护最大值,若当前位置($i$)和队首($j$)距离超过$\frac{len}{2}$($len$为环长)时,就将队首弹出。因为会在后面的$i$(队首),$j+len$(当前位置)位置取到更优的值。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#define N (200009)
using namespace std; struct Edge{int to,next;}edge[N<<];
int n,m,bcc_num,ans,f[N],a[N],q[N];
int DFN[N],Low[N],dfs_num,stack[N],top;
int head[N],num_edge;
vector<int>E[N]; inline int read()
{
int x=,w=; char c=getchar();
while (c<'' || c>'') {if (c=='-') w=-; c=getchar();}
while (c>='' && c<='') x=x*+c-'', c=getchar();
return x*w;
} void add(int u,int v)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
head[u]=num_edge;
} void Tarjan(int x,int fa)
{
DFN[x]=Low[x]=++dfs_num; stack[++top]=x;
for (int i=head[x]; i; i=edge[i].next)
if (!DFN[edge[i].to])
{
Tarjan(edge[i].to,x);
if (Low[edge[i].to]>DFN[x]) E[x].push_back(edge[i].to), top--;
Low[x]=min(Low[x],Low[edge[i].to]);
if (Low[edge[i].to]==DFN[x])
{
E[x].push_back(++bcc_num);
while (top)
{
int now=stack[top--];
E[bcc_num].push_back(now);
if (now==edge[i].to) break;
}
}
}
else if (edge[i].to!=fa)
Low[x]=min(Low[x],DFN[edge[i].to]);
} void DFS(int x,int fa)
{
for (int i=; i<E[x].size(); ++i) DFS(E[x][i],x);
if (x<=n)
{
int cmax=;
for (int i=; i<E[x].size(); ++i)
{
cmax=max(cmax,f[E[x][i]]+);
if (cmax>f[x]) swap(f[x],cmax);
}
ans=max(ans,f[x]+cmax);
}
else
{
int l=,r=,cnt=;
for (int i=; i<E[x].size(); ++i) a[++cnt]=E[x][i];
for (int i=; i<=cnt; ++i) a[cnt+i]=a[i];
for (int i=; i<=cnt*; ++i)
{
while (l<=r && (i-q[l])>(cnt+)/) ++l;
if (i>=cnt) ans=max(ans,f[a[i]]+f[a[q[l]]]+i-q[l]);
while (l<=r && f[a[i]]-i>=f[a[q[r]]]-q[r]) r--;
q[++r]=i;
}
for (int i=; i<=cnt/; ++i) f[x]=max(f[x],f[a[i]]+i-);
for (int i=cnt/+; i<=cnt; ++i) f[x]=max(f[x],f[a[i]]+cnt-i);
}
} int main()
{
n=bcc_num=read(); m=read();
for (int i=; i<=m; ++i)
{
int k=read(),last=;
for (int j=; j<=k; ++j)
{
int x=read();
if (last) add(last,x), add(x,last);
last=x;
}
}
Tarjan(,);
DFS(,); printf("%d\n",ans);
}

BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)的更多相关文章

  1. [SHOI2008]cactus仙人掌图[圆方树+树dp]

    题意 求仙人掌的直径(相距最远的两个点的距离). \(n\le 5\times 10^4​\) 分析 建立圆方树,讨论答案路径的 lca 在圆点还是方点. 利用树形 dp 求出每个圆点到 不同子树内圆 ...

  2. bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...

  3. BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌)

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...

  4. bzoj1023: [SHOI2008]cactus仙人掌图

    学习了一下圆方树. 圆方树是一种可以处理仙人掌的数据结构,具体见这里:http://immortalco.blog.uoj.ac/blog/1955 简单来讲它是这么做的:用tarjan找环,然后对每 ...

  5. BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌dp)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3467  Solved: 1438[Submit][Status][Discuss] Descripti ...

  6. BZOJ1023[SHOI2008]cactus仙人掌图 【仙人掌DP】

    题目 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌 图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路. 举例来说 ...

  7. 2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)

    传送门 求仙人掌的直径. 感觉不是很难. 分点在环上面和不在环上分类讨论. 不在环上直接树形dpdpdp. 然后如果在环上讨论一波. 首先对环的祖先有贡献的只有环上dfsdfsdfs序最小的点. 对答 ...

  8. bzoj1023 [SHOI2008]cactus仙人掌图 & poj3567 Cactus Reloaded——求仙人掌直径

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1023    http://poj.org/problem?id=3567 仙人掌!直接模仿 ...

  9. [bzoj1023][SHOI2008]cactus 仙人掌图 (动态规划)

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回 ...

随机推荐

  1. Electron学习(一)——— electron的安装

    前言 本人是做java开发的(菜鸟),做web项目的朋友们基本上都会遇到同样一个,永远不知道客户会怎么样使用,或者说永远不知道客户会用什么浏览器打开我们做出来的应用,就算你跟他说明了一定得用某某某浏览 ...

  2. 学习实践之DEMO《nodejs模拟POST登陆》

    一个简单的PHP接收参数页面 <?php header("content-type:text/html;charset=utf-8"); if($_POST[username ...

  3. jdk1.7安装,cmd下 java -version出现错误:“could not open `D:\Java\jre7\lib\amd64\jvm.cfg”

    cmd 下java -version出现错误:“could not open `D:\Java\jre7\lib\amd64\jvm.cfg”,出现这种错误可能是由于先前有安装老版本jdk,之后将新版 ...

  4. 【原】ActiveMq实现分布式事务一致性

    前言:关于分布式事务话题一直是颇有争议的话题,在本文中通过ActiveMq 实现分布式事务做一个简单的demo;同时也让自己能在实践中可以获取经验和对分布式事务自己的一些思考. 1.本地事务 我们通常 ...

  5. linux中cut、printf、awk、sed命令

    cut.printf.awk.sed在linux中都是用来处理文本的命令,接下来一个一个看. 一.cut命令 cut [选项] 文件名 选项: 主要使用一下两个参数,若是只使用 -f 则默认的分割符为 ...

  6. 网页布局设计css中单位px和em,rem的区别

    国内的设计师大都喜欢用px,而国外的网站大都喜欢用em和rem,那么三者有什么区别,又各自有什么优劣呢? PX特点 1. IE无法调整那些使用px作为单位的字体大小: 2. 国外的大部分网站能够调整的 ...

  7. extract-text-webpack-plugin 作用、安装、使用

    作用:该插件的主要是为了抽离css样式,防止将样式打包在js中引起页面样式加载错乱的现象 安装:插件安装命令如下: npm install extract-text-webpack-plugin -- ...

  8. [Error] 未发现相关 less 编译器配置,请检查wepy.config.js文件

    此错误是由于缺少包引起的 npm install less -d 直接装包即可

  9. 《Inside C#》笔记(十四) 反射

    通过反射可以在运行时动态地获取一个应用的元数据. 一 反射相关的类和方法 与反射相关的类处在System.Reflection命名空间下,包括Assembly.Module.MethodInfo.Fi ...

  10. 取消Eclipse等号、分号、空格代码自动补全

      本文主要参考了以下文章 http://www.cnblogs.com/a-zx/p/3388041.html 本文基于 Eclipse Java EE IDE for Web Developers ...