题目:给你一根长度为n的绳子,请把绳子剪成m段,每段绳子的长度记为k[0],k[1]....,k[m]。请问k[0]xk[1]x...,k[m]可能的最大乘积是多少。例如:长度为8剪成2 3 3 得到最大乘积18.

分析:绳子的最小基础剪发可以分为2 或3, 也就是,当数据中全是由2 或3 组成时,相乘的结果最大。因此,由小至大,

  * 绳子的长为2时,只能剪成1 1,即f(2) = 1x1 = 1;

  * 当绳子长为3时,可能将绳子剪成长度为1 2 或者1 1 1,由于1 x 2 > 1 x 1 x 1,因此f(3)=2;
  * 当绳子长为4时,可能将绳子剪成长度为2 2 或者 1 2 1 或者1 1 1 1或者 1 3,由于2 x 2 > 其他,因此f(4)=2*2
  * 当绳子长为5时,可能将绳子剪成长度为3 2 或者...,由于3 x 2 > 其他,因此f(5)=3*2;
  * 当绳子长为6时,可能将绳子剪成长度为3 3 或者...,由于3 x 3 > 其他,因此f(6)=3*3=9;//不使用f(3)因为3为最小单位中的最大值
  * 当绳子长为7时,可能将绳子剪成长度为4 3 或者...,由于4 x 3 > 其他,因此f(7)=f(4)*3=2*2*3=12;我们的算法求解范围为由1-n。由小向大算,因此f(4)我们已经算出来了,直接使用即可,不必重复计算。
  * 当绳子长为8时,可能将绳子剪成长度为2 6 或者...,因此f(8)=f(6)*2=3*3*2=18;我们的算法求解范围为由1-n。由小向大算,因此f(6)我们已经算出来了,直接使用即可,不必重复计算。

  同理,当绳子长为9时,比较2*f(7)的值和3*f(6)的值即可.当绳子长为10时,比较2*f(8)的值和3*f(7)的值即可..当绳子长为11时,比较2*f(9)的值和3*f(8)的值即可.

public int maxProductAfterCutting(int length){
if(length<2){
return 0;
}
if(length==2){
return 1;
}
if(length==3){
return 2;
} int[] products = new int[length+1];
products[0]=0;
products[1]=1;
products[2]=2;
products[3]=3;
int max=0;
for(int i=4;i<=length;i++){
max=0;
for(int j=1;j<=i/2;j++){
int product =products[j]*products[i-j];
if(max<product) {
max = product;
}
}
products[i]=max;
}
return products[length];
}

这是另一种实现方式。按照最小基数单元来的。2 3,减少一点点计算次数。第一次感受到了算法的美妙之处~~~不要鄙视我,哈哈

public int maxProductAfterCutting(int length) {
if (length < 2) {
return 0;
}
if (length == 2) {
return 1;
}
if (length == 3) {
return 2;
} int[] products = new int[length + 1];
products[0] = 0;
products[1] = 1;
products[2] = 2;
products[3] = 3;
for (int i = 4; i <= length; i++) {
int p2 = 2 * products[i - 2];
int p3 = 3 * products[i - 3];
products[i] = p2 < p3 ? p3 : p2;
}
return products[length];
}

上面是动态规划法,下面是贪婪法。

public int maxProductAfterCutting2(int length) {
if (length < 2) {
return 0;
}
if (length == 2) {
return 1;
}
if (length == 3) {
return 2;
}
int paraThree = length / 3;
int paraTwo = 1;
if (length - paraThree * 3 == 1) {
paraThree--;
paraTwo = 2;
}
return (int) (Math.pow(3, paraThree)) * (int) (Math.pow(2, paraTwo));
}

剑指Offer(书):剪绳子的更多相关文章

  1. 剑指 Offer 14- II. 剪绳子 II + 贪心 + 数论 + 快速幂

    剑指 Offer 14- II. 剪绳子 II 题目链接 因为有取模的操作,动态规划中max不能用了,我们观察:正整数从1开始,但是1不能拆分成两个正整数之和,所以不能当输入. 2只能拆成 1+1,所 ...

  2. 剑指 Offer 14- I. 剪绳子 + 动态规划 + 数论

    剑指 Offer 14- I. 剪绳子 题目链接 还是343. 整数拆分的官方题解写的更清楚 本题说的将绳子剪成m段,m是大于1的任意一个正整数,也就是必须剪这个绳子,至于剪成几段,每一段多长,才能使 ...

  3. 剑指 Offer 14- II. 剪绳子 II

    剑指 Offer 14- II. 剪绳子 II 给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m.n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]... ...

  4. 【Java】 剑指offer(13) 剪绳子

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n> ...

  5. 剑指offer:剪绳子

    题目描述: 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可 ...

  6. Go语言实现:【剑指offer】剪绳子

    该题目来源于牛客网<剑指offer>专题. 给你一根长度为n的绳子,请把绳子剪成整数长的m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],-,k[ ...

  7. [剑指offer]14-1.剪绳子

    14-1.剪绳子 方法一 动态规划 思路:递归式为f(n)=max(f(i), f(n-i)),i=1,2,...,n-1 虽然我现在也没有彻底明白这个递归式是怎么来的,但用的时候还是要注意一下.f( ...

  8. 剑指offer——15剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

  9. 剑指offer:剪绳子(找规律,贪心算法,动态规划)

    1. 题目描述 /* 题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1] ...

  10. 【剑指offer】剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

随机推荐

  1. 本周学习总结(ng-zorro/MDN索引/读书笔记)

    按钮 <button ng-button nzType="primary">Primary</button> nzType="" pri ...

  2. 关于asp.net网址出现乱码问题的解决方法

    背景: asp.net项目,C#,VS2010,.netframework 4.0 创建之初,没有任何问题,随着项目文件的增多,不免很多问题会出现, 最近就莫名其妙的发现我的项目网址多了一段乱码,很是 ...

  3. c++关键字explicit

    关键字explicit,可以阻止不应该允许的经过转换构造函数进行的隐式转换的发生.声明为explicit的构造函数不能在隐式转换中使用. C++中, 一个参数的构造函数(或者除了第一个参数外其余参数都 ...

  4. Reduce实现

    Reduce实现 参考 第一版 Array.prototype.fakeReduce = function (fn, base) { // this 指向原数组 // 拷贝数据, 更改指针方向 var ...

  5. Win7执行应用报CLR20r3错误处理记录

    Windows7环境下运行应用报"CLR20r3"错误,错误信息如下: 问题详细信息: 问题签名: 问题事件名称: CLR20r3 问题签名 : qbbtools.exe 问题签名 ...

  6. 135 Candy 分配糖果

    There are N children standing in a line. Each child is assigned a rating value.You are giving candie ...

  7. ubuntu server 14.04LTS升级Python3.5

    依次执行如下命令:需要root权限,普通用户可以使用sudo 来执行以下命令 root@ubuntu-server:~# add-apt-repository ppa:fkrull/deadsnake ...

  8. linux/centos系统如何使用yum安装vi/vim?

    yum安装vim最简单的命令, yum -y install vim* 然后就可以使用vi命令了. 网上的文章: 要使用vim, 使用yum看了一下,发现有4个 vim-common.i386     ...

  9. Java提供的序列化和反序列化

    序列化:是指将Java对象转换为二进制数据. 反序列化:将二进制数据转换为Java对象. 与序列化功能相关的类有: java.io.Serializable; java.io.ObjectOutput ...

  10. AJPFX总结内部类

    内部类:内部类的访问规则:1. 内部类可以直接访问外部类中的成员,包括私有   原因是内部类中持有了一个外部类的引用,格式:外部类.this2. 外部类要访问内部类,必须建立内部类对象访问格式:1.  ...