题目:给你一根长度为n的绳子,请把绳子剪成m段,每段绳子的长度记为k[0],k[1]....,k[m]。请问k[0]xk[1]x...,k[m]可能的最大乘积是多少。例如:长度为8剪成2 3 3 得到最大乘积18.

分析:绳子的最小基础剪发可以分为2 或3, 也就是,当数据中全是由2 或3 组成时,相乘的结果最大。因此,由小至大,

  * 绳子的长为2时,只能剪成1 1,即f(2) = 1x1 = 1;

  * 当绳子长为3时,可能将绳子剪成长度为1 2 或者1 1 1,由于1 x 2 > 1 x 1 x 1,因此f(3)=2;
  * 当绳子长为4时,可能将绳子剪成长度为2 2 或者 1 2 1 或者1 1 1 1或者 1 3,由于2 x 2 > 其他,因此f(4)=2*2
  * 当绳子长为5时,可能将绳子剪成长度为3 2 或者...,由于3 x 2 > 其他,因此f(5)=3*2;
  * 当绳子长为6时,可能将绳子剪成长度为3 3 或者...,由于3 x 3 > 其他,因此f(6)=3*3=9;//不使用f(3)因为3为最小单位中的最大值
  * 当绳子长为7时,可能将绳子剪成长度为4 3 或者...,由于4 x 3 > 其他,因此f(7)=f(4)*3=2*2*3=12;我们的算法求解范围为由1-n。由小向大算,因此f(4)我们已经算出来了,直接使用即可,不必重复计算。
  * 当绳子长为8时,可能将绳子剪成长度为2 6 或者...,因此f(8)=f(6)*2=3*3*2=18;我们的算法求解范围为由1-n。由小向大算,因此f(6)我们已经算出来了,直接使用即可,不必重复计算。

  同理,当绳子长为9时,比较2*f(7)的值和3*f(6)的值即可.当绳子长为10时,比较2*f(8)的值和3*f(7)的值即可..当绳子长为11时,比较2*f(9)的值和3*f(8)的值即可.

public int maxProductAfterCutting(int length){
if(length<2){
return 0;
}
if(length==2){
return 1;
}
if(length==3){
return 2;
} int[] products = new int[length+1];
products[0]=0;
products[1]=1;
products[2]=2;
products[3]=3;
int max=0;
for(int i=4;i<=length;i++){
max=0;
for(int j=1;j<=i/2;j++){
int product =products[j]*products[i-j];
if(max<product) {
max = product;
}
}
products[i]=max;
}
return products[length];
}

这是另一种实现方式。按照最小基数单元来的。2 3,减少一点点计算次数。第一次感受到了算法的美妙之处~~~不要鄙视我,哈哈

public int maxProductAfterCutting(int length) {
if (length < 2) {
return 0;
}
if (length == 2) {
return 1;
}
if (length == 3) {
return 2;
} int[] products = new int[length + 1];
products[0] = 0;
products[1] = 1;
products[2] = 2;
products[3] = 3;
for (int i = 4; i <= length; i++) {
int p2 = 2 * products[i - 2];
int p3 = 3 * products[i - 3];
products[i] = p2 < p3 ? p3 : p2;
}
return products[length];
}

上面是动态规划法,下面是贪婪法。

public int maxProductAfterCutting2(int length) {
if (length < 2) {
return 0;
}
if (length == 2) {
return 1;
}
if (length == 3) {
return 2;
}
int paraThree = length / 3;
int paraTwo = 1;
if (length - paraThree * 3 == 1) {
paraThree--;
paraTwo = 2;
}
return (int) (Math.pow(3, paraThree)) * (int) (Math.pow(2, paraTwo));
}

剑指Offer(书):剪绳子的更多相关文章

  1. 剑指 Offer 14- II. 剪绳子 II + 贪心 + 数论 + 快速幂

    剑指 Offer 14- II. 剪绳子 II 题目链接 因为有取模的操作,动态规划中max不能用了,我们观察:正整数从1开始,但是1不能拆分成两个正整数之和,所以不能当输入. 2只能拆成 1+1,所 ...

  2. 剑指 Offer 14- I. 剪绳子 + 动态规划 + 数论

    剑指 Offer 14- I. 剪绳子 题目链接 还是343. 整数拆分的官方题解写的更清楚 本题说的将绳子剪成m段,m是大于1的任意一个正整数,也就是必须剪这个绳子,至于剪成几段,每一段多长,才能使 ...

  3. 剑指 Offer 14- II. 剪绳子 II

    剑指 Offer 14- II. 剪绳子 II 给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m.n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]... ...

  4. 【Java】 剑指offer(13) 剪绳子

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 给你一根长度为n绳子,请把绳子剪成m段(m.n都是整数,n> ...

  5. 剑指offer:剪绳子

    题目描述: 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可 ...

  6. Go语言实现:【剑指offer】剪绳子

    该题目来源于牛客网<剑指offer>专题. 给你一根长度为n的绳子,请把绳子剪成整数长的m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],-,k[ ...

  7. [剑指offer]14-1.剪绳子

    14-1.剪绳子 方法一 动态规划 思路:递归式为f(n)=max(f(i), f(n-i)),i=1,2,...,n-1 虽然我现在也没有彻底明白这个递归式是怎么来的,但用的时候还是要注意一下.f( ...

  8. 剑指offer——15剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

  9. 剑指offer:剪绳子(找规律,贪心算法,动态规划)

    1. 题目描述 /* 题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1] ...

  10. 【剑指offer】剪绳子

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

随机推荐

  1. Nginx系列篇一:linux中安装Nginx

    提示: 如遇到yum或者wget的问题, 请详见--->杂集:更换centos yum源 请详见--->杂集:关于VMware中linux使用NAT模式配置 1.安装nginx需要的环境 ...

  2. offsetLeft 与 left的区别

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. AtCoder Grand Contest 016 B - Colorful Hats

    题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_b 题目大意: 有\(N\)只猫,每只猫头上带着一个帽子,帽子有颜色,现在告诉你每只猫能看到的 ...

  4. Travelling HDU - 3001

    Travelling HDU - 3001 方法:3进制状态压缩dp(更好的方法是预处理出每个状态数字对应的y数组,然后用刷表,时间复杂度可以少一个n) #include<cstdio> ...

  5. vue中methods中的方法闭包缓存问题

    vue中methods中的方法闭包缓存问题 问题背景 需求描述 在路由的导航栏中需要, 判断是否为第一次点击 需要一个标志位来记录是否点击过 现状: 这个标志位只在一个函数中用过.不希望存放全局 希望 ...

  6. sublime text 3 文件列表忽略特定格式的文件

    Preferences->Settings ,编辑相关代码,注意JSON格式: 排除特定目录,使用:"folder_exclude_patterns" 排除特定文件,使用:& ...

  7. C. Arcade dp二维费用背包 + 滚动数组 玄学

    http://codeforces.com/gym/101257/problem/C 询问从左上角走到右下角,每次只能向右或者向左,捡起三种物品算作一个logo,求最多能得到多少个logo. 设dp[ ...

  8. RHEL 6.5----heartbeat

    主机名 IP  所需软件  master 192.168.30.130  heartbeat.httpd node-1 192.168.30.131  nfs  node-2 192.168.30.1 ...

  9. NodeJS&&前端思考

    做大型软件(工程化): 1.测试相关 tdd / bdd 测试覆盖率 2.规范化 standard.各种 lint.hint 3.构建相关 gulp.grunt.webpack,大量插件 4.生成器 ...

  10. 外文翻译 《How we decide》多巴胺的预言 第三节

    这是第二章的最后一节. 书的导言 本章第一节 本章第二节 本节阅读感言:自我批评是自我提升的妙方. 多巴胺是我们感情的源泉.多巴胺相关的神经系统在不断的记录着我们主观意识没有注意到的一个个模式,将它们 ...