令$f[i]$表示以i为结尾的答案最小值,则$f[i] = min \{f[j] + cnt[j + 1][i]^2\}_{1 \leq j < i}$,其中$cnt[j + 1][i]$表示$[j + 1, i]$内有几个不同的数

对于区间长度为$k$,则答案最大值就是$\sqrt{k}$,所以对于每个$i$我们其实只要枚举$\sqrt{i}$个值就好了

 /**************************************************************
Problem: 1584
User: rausen
Language: C++
Result: Accepted
Time:112 ms
Memory:1120 kb
****************************************************************/ #include <cstdio>
#include <algorithm> using namespace std;
const int N = 4e4 + ;
const int MXlen = ; int n, m;
int a[N], f[N], seq[MXlen], now[MXlen];
int st, mxlen, nowlen; inline int read(); inline int sqr(int x) {
return x * x;
} int main() {
int i, j;
n = read(), m = read();
for (i = ; i <= n; ++i) a[i] = read();
for (mxlen = ; mxlen * mxlen <= n; ++mxlen);
--mxlen;
for (i = ; i <= n; ++i) {
f[i] = i;
for (st = , j = ; j <= nowlen; ++j)
if (seq[j] == a[i]) {
st = j;
break;
}
if (!st) {
if (nowlen != mxlen) {
seq[++nowlen] = a[i];
now[nowlen] = i;
} else {
for (j = ; j < nowlen; ++j)
seq[j] = seq[j + ], now[j] = now[j + ];
seq[nowlen] = a[i], now[nowlen] = i;
}
} else {
for (j = st; j < nowlen; ++j)
seq[j] = seq[j + ], now[j] = now[j + ];
seq[nowlen] = a[i], now[nowlen] = i;
}
for (j = nowlen; j >= ; --j)
f[i] = min(f[i], f[now[j - ]] + sqr(nowlen - j + ));
}
printf("%d\n", f[n]);
return ;
} inline int read() {
static int x;
static char ch;
x = , ch = getchar();
while (ch < '' || '' < ch)
ch = getchar();
while ('' <= ch && ch <= '') {
x = x * + ch - '';
ch = getchar();
}
return x;
}

BZOJ1584 [Usaco2009 Mar]Cleaning Up 打扫卫生的更多相关文章

  1. 【动态规划】bzoj1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    思路自然的巧妙dp Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分 ...

  2. [BZOJ1584] [Usaco2009 Mar]Cleaning Up 打扫卫生(DP)

    传送门 不会啊,看了好久的题解才看懂 TT 因为可以直接分成n段,所以就得到一个答案n,求解最小的答案,肯定是 <= n 的, 所以每一段中的不同数的个数都必须 <= sqrt(n),不然 ...

  3. bzoj1584 [Usaco2009 Mar]Cleaning Up 打扫卫生 动态规划+思维

    Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的 ...

  4. DP经典 BZOJ 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    BZOJ 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 419  Solve ...

  5. BZOJ_1584_[Usaco2009 Mar]Cleaning Up 打扫卫生_DP

    BZOJ_1584_[Usaco2009 Mar]Cleaning Up 打扫卫生_DP Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= ...

  6. bzoj:1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    Description 有N头奶牛,每头那牛都有一个标号Pi,1 <= Pi <= M <= N <= 40000.现在Farmer John要把这些奶牛分成若干段,定义每段的 ...

  7. [bzoj1587] [Usaco2009 Mar]Cleaning Up 打扫卫生

    首先(看题解)可得...分成的任意一段中的不同颜色个数都<=根号n...不然的话直接分成n段会更优= = 然后就好做多了.. 先预处理出对于每头牛i,和它颜色相同的前一头和后一头牛的位置. 假设 ...

  8. 【BZOJ】1584: [Usaco2009 Mar]Cleaning Up 打扫卫生

    [算法]DP+数学优化 [题意]把n个1~m的数字分成k段,每段的价值为段内不同数字个数的平方,求最小总价值.n,m,ai<=40000 [题解] 参考自:WerKeyTom_FTD 令f[i] ...

  9. bzoj 1584: [Usaco2009 Mar]Cleaning Up 打扫卫生【dp】

    参考:http://hzwer.com/3917.html 好神啊 注意到如果分成n段,那么答案为n,所以每一段最大值为\( \sqrt{n} \) 先把相邻并且值相等的弃掉 设f[i]为到i的最小答 ...

随机推荐

  1. phpcms标签大全V9

    转自:http://blog.csdn.net/cloudday/article/details/7343448调用头部 尾部 {template "content"," ...

  2. Scrum Meeting---Eleven(2015-11-6)

    今日已完成任务和明日要做的任务 姓名 今日已完成任务 今日时间 明日计划完成任务 估计用时 董元财 倒计时设计 3h 商品发布页设计 4h 胡亚坤 低栏设计 2h UI风格 2h 刘猛 通讯录设计 2 ...

  3. jQuery.validate.js+API_cn

      名称 返回类型 描述 validate(options) 返回:Validator 验证所选的FORM valid() 返回:Boolean 检查是否验证通过 rules() 返回:Options ...

  4. iOS - OC Block 代码块

    前言 Block 是一段预先准备好的代码,可以在需要的时候执行,可以当作参数传递.Block 可以作为函数参数或者函数的返回值,而其本身又可以带输入参数或返回值.Block 是 C 语言的,类似于一个 ...

  5. Nginx基础知识之————多模块(非覆盖安装、RTMP在线人数实例安装测试)

    说明:已经安装好的nginx,需要添加一个未被编译安装的模块,需要怎么弄呢? 具体:这里以安装第三方nginx-rtmp-module和nginx-accesskey-2.0.3模块为例,nginx的 ...

  6. tracert命令详解

    一.windows.Linux系统下 tracert ip/网站域名 二.mac traceroute IP/域名 ---------2016-10-10 15:29:07-- source:[1]t ...

  7. mysql delimiter

    默认情况下,mysql遇到分号; 就认为是一个命令的终止符, 就会执行命令.而有些时候,我们不希望这样,比如存储过程中包含多个语句,这些语句以分号分割,我们希望这些语句作为一个命令,一起执行,怎么解决 ...

  8. 基本分类方法——KNN(K近邻)算法

    在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...

  9. smarty 学习记录

    smarty模版是比较大众化的一个模版,在php开发过程当中被很多开发者视为最友好的模版之一,学习smarty课程对于很多培训机构来说也是列入了培训课程之一,那么很多方面就需要我们学习了一. 安装首先 ...

  10. x^y=(x&~y)|(~x&y)证明

    我见过最棒的证明是文氏图:(首先要知道二元布尔代数是集合的特殊情况,所以把X和Y当作两个集合,结论成立,那么在二元布尔代数里面也成立.)左边的圈是X,右边的圈是Y.如果是OR 也就是取或,中间的白色的 ...