LightOJ 1370 - Bi-shoe and Phi-shoe (欧拉函数思想)
http://lightoj.com/volume_showproblem.php?problem=1370
Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,
Score of a bamboo = Φ (bamboo's length)
(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.
The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].
Output
For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.
Sample Input
3
5
1 2 3 4 5
6
10 11 12 13 14 15
2
1 1
Sample Output
Case 1: 22 Xukha
Case 2: 88 Xukha
Case 3: 4 Xukha
题目中标红的部分是该题理解的关键,每个学生所得的bamboo的score的值必须大于或等于他的幸运数字, bamboo的score值就是其长度x的欧拉函数值(即小于x且与x互质的数的个数)
每单位长度花费1Xukha,求买这些bamboo的最小花费。
如样例2:6个学生,每个学生的幸运数字分别为10、11 、12、13、14、15
那么给第一个人买的bamboo的score值必须大于或等于10,score值可能为10(x为11)、11、12、等...我们要找x值最小的,显然,这里第一个人买的是长度为11的bamboo
我们知道欧拉函数有一个性质:素数p的欧拉函数值为p-1;
我们要找长度为小的bamboo,只需将幸运数字加1开始找,如果该数字x是素数,那么这个数字x-1就是长度为x的score值,且满足条件,所求的x就是满足条件bamboo的长度
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<algorithm> using namespace std; typedef long long ll; const int N = ; int b[N] = {, , }; void dabiao()
{
for(int i = ; i < N ; i++)
{
if(!b[i])
{
for(int j = i + i ; j <= N ; j += i)
b[j] = ;
}
} }//素数打表 int main()
{
dabiao();
int t, n, m, x = ;
scanf("%d", &t);
while(t--)
{
x++;
ll sum = ;
scanf("%d", &n);
while(n--)
{
scanf("%d", &m);
for(int i = m + ; ; i++)
{
if(b[i] == )
{
sum += i;
break;
}
}
}
printf("Case %d: %lld Xukha\n", x, sum);
}
return ;
}
LightOJ 1370 - Bi-shoe and Phi-shoe (欧拉函数思想)的更多相关文章
- FZU 1759 欧拉函数 降幂公式
Description Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...
- poj3696 快速幂的优化+欧拉函数+gcd的优化+互质
这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...
- HDU 4483 Lattice triangle(欧拉函数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...
- UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)
题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...
- 【欧拉函数】【HDU1286】 找新朋友
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1
5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]
题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...
随机推荐
- Open Explorer Plugin for Eclipse (eclipse 插件 在eclipse里面打开文件目录)
就是在eclipse里面直接打开文件所在的目录地址 只要将下面的jar 文件放到你的 “$ECLIPSE_HOME/plugins” 下面,重启eclipse就ok了 要想卸载的话 停止eclip ...
- R语言将5位数字日期转为正常日期
R语言中用double表示日期,即从1970-1-1距离给定日期的天数,将5位数字日期转为正常日期格式的方法 as.Date(16543,origin='1970-1-1')
- UVa 11019 (AC自动机 二维模式串匹配) Matrix Matcher
就向书上说得那样,如果模式串P的第i行出现在文本串T的第r行第c列,则cnt[r-i][c]++; 还有个很棘手的问题就是模式串中可能会有相同的串,所以用repr[i]来记录第i个模式串P[i]第一次 ...
- Tyvj 1085 派对
这道题和HDU 1016的素数环那道题很相似. 虽然1A了,但写代码的过程中还是丢三落四的. 贴完代码闪人,嘿嘿 //#define LOCAL #include <iostream> # ...
- Strlen()与sizeof()
在学习C语言时以及面试中,经常会见到strlen()与sizeof()这一对容易混淆的概念,搞清楚这两个概念,往往考察了编程人员对语言的基本掌握能力. 首先大家先明确两个概念是: 1.strlen() ...
- volley(5) 参数total_remain:totalqty, data:[{ bar_status:XX , bar_code: "XX",bar_remain:XX, bar_whcode:"XX" , bar_prodcode:"XX",bar_id:XX,bar_location: "XX", pr_detail: "XX" , bar_batchcode:method:POST
1. 来源 : WHCombineBatchFragment.java 2. 部分代码 WHCombineBatchFragmentCombineBtnClickEvent whc2;private ...
- Spark源码阅读(1): Stage划分
Spark中job由action动作生成,那么stage是如何划分的呢?一般的解答是根据宽窄依赖划分.那么我们深入源码看看吧 一个action 例如count,会在多次runJob中传递,最终会到一个 ...
- pg 匹配中文字符
用到了正则表达式: 字段 ~'[\u4E00-\u9FA5]+$'; 注意:此表达式可能还不能取到最全的值.
- 四:分布式事务一致性协议paxos通俗理解
转载地址:http://www.lxway.com/4618606.htm 维基的简介:Paxos算法是莱斯利·兰伯特(Leslie Lamport,就是 LaTeX 中的"La" ...
- 一:AndEngine的小例子
首先导入架包,下载:http://download.csdn.net/detail/duancanmeng/4060082 lib文件夹中 像我们写android程序entends Activity一 ...