题面

题解

知识引入 - \(SG\)函数

任何一个公平组合游戏都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”。下面我们就在有向无环图的顶点上定义Sprague-Grundy函数。

定义\(mex\)运算,表示最小的不属于这个集合的非负整数

如:\(mex(\{0,1,2,4\})=3,mex(\{1,3,5\})=0,mex(\{\})=0\)。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数\(g\)如下:

\[g(x)=mex(\{g(y)\mid y \in \mathrm{suc}_x\})
\]

由\(g(x)\)的性质可以得出:\(g(x) = 0 \Leftrightarrow x \in\)必败态

如果一个游戏可以分成多个子游戏,那么整个游戏的\(SG\)值就是每个子游戏的\(SG\)值的异或和。

本题题解

部分分可以暴力求\(g(x)\)。

枚举分成的堆数。如果将\(x\)分成了\(i\)堆,那么这\(i\)堆中有\(x \% i\)堆\(\left\lceil\frac{x}{i}\right\rceil\),有\(i - x \% i\)堆\(\left\lfloor\frac{x}{i}\right\rfloor\)。

对于每一个\(i\),算出它的\(SG\)值,为所有分出来的\(SG\)值的异或和的\(mex\)

然后\(SG\)函数可以记忆化。

接下来继续推性质,因为\(x \oplus x = 0\),所以只需要根据奇偶性讨论一下就可以了,这时候大约有\(70\)分。

然后\(\left\lfloor\frac{x}{i}\right\rfloor\)可以数论分块,于是数论分块即可。

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int maxn(100010);
int sg[maxn], vis[maxn], T, F; int SG(int x)
{
if(x < F) return 0;
if(~sg[x]) return sg[x];
for(RG int l = 2, r; l <= x; l = r + 1)
{
r = (x / (x / l));
for(RG int j = l; j <= std::min(l + 1, r); j++)
{
int a = x % j, b = x / j, c = j - x % j, s = 0;
if(a & 1) s ^= SG(b + 1);
if(c & 1) s ^= SG(b);
vis[s] = x;
}
} for(RG int i = 0; ; i++) if(vis[i] != x) return sg[x] = i;
} int main()
{
memset(sg, -1, sizeof sg);
T = read(), F = read();
while(T--)
{
int n = read(), ans = 0;
for(RG int i = 1; i <= n; i++) ans ^= SG(read());
printf("%d ", (bool)ans);
}
return 0;
}

【HNOI2014】江南乐的更多相关文章

  1. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

  2. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  3. bzoj3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  4. [HNOI2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  5. 洛谷P3235 [HNOI2014]江南乐(Multi-SG)

    题目描述 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F,然后游戏系统 ...

  6. luogu P3235 [HNOI2014]江南乐

    传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...

  7. 【BZOJ】3576: [Hnoi2014]江南乐

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3576 很显然,这是一个multi-nim游戏. 注意:1.一个点的SG值就是一个不等于它的 ...

  8. 【bzoj3576】 Hnoi2014—江南乐

    http://www.lydsy.com/JudgeOnline/problem.php?id=3576 (题目链接) 题意 给出一个数$F$,然后$n$堆石子,每次操作可以把一堆不少于$F$的石子分 ...

  9. luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

    感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...

  10. 【LG3235】 [HNOI2014]江南乐

    题目描述 给出\(n\)堆石子, 每次可以选择将大于某个数\(f\)一堆平均分成多个堆, 最后不能操作的失败. 题解 10pts 直接爆搜即可. 70pts 像我们对这类题目的常规操作那样,将一整个局 ...

随机推荐

  1. css中padding与margin

    CSS padding margin border属性详解 图解CSS padding.margin.border属性W3C组织建议把所有网页上的对像都放在一个盒(box)中,设计师可以通过创建定义来 ...

  2. 转载:eclipse 搭建SSH项目(第二篇,有具体的项目例子)

    原文地址:http://blog.csdn.net/yeohcooller/article/details/9316923 读博文前应该注意: 本文提纲:本文通过一个用户注册的实例讲解SSH的整合.创 ...

  3. 使用SDWebImage淡入淡出的方式加载图片

    使用SDWebImage淡入淡出的方式加载图片 效果: 请通过以下方式下载源码: 找到它修改文件的地方: 以下是使用源码: // // ViewController.m // SDWebImageFa ...

  4. MATLAB 正则表达式(一)(转)

    http://blog.sina.com.cn/s/blog_53f29119010009uf.html 正则表达式这个词上大学的时候就听同寝室的一个家伙常念叨——那家伙当然很厉害啦,现在已经发洋财去 ...

  5. 一、动态网络编程的概念 二、Tomcat服务器搭建 三、Servlet组件介绍

    一.动态网络编程的概念 动态网页:结合了HTML以外的高级程序编程语言和数据库技术生成的页面. 动态网页编程技术: ASP,PHP,JSP HTTP协议:规范浏览器和服务器之间通信的数据格式. 浏览器 ...

  6. November 8th 2016 Week 46th Tuesday

    When he can't, he tries a new way to share a new pair. 当他做不到时,他尝试一种新的方式:分享. To share, your failing e ...

  7. docker 部署django项目(nginx + uwsgi +mysql)

    最近在学习用docker部署Django项目,经过百折不挠的鼓捣,终于将项目部署成功,爬过好多坑,也发现很多技能需要提高.特此写下随笔与小伙伴们分享,希望能对大家有所启发. docker的理论我就不赘 ...

  8. Ext 向Ext.form.ComboBox()中添加列表的分类

    1.静态 [javascript] view plaincopy var staticComboBox = new Ext.form.ComboBox({   fieldLabel:'回访结果',   ...

  9. php中static静态变量的使用方法详解

    php中的变量作用范围的另一个重要特性就是静态变量(static 变量).静态变量仅在局部函数域中存在且只被初始化一次,当程序执行离开此作用域时,其值不会消失,会使用上次执行的结果.     看看下面 ...

  10. Java并发编程--5.信号量和障碍器

    Semaphore信号量 简介 它本质上是一个共享锁,限制访问公共资源的线程数目,它也被称为计数信号量acquire()许可一个线程, Semaphore – 1; 没有可用的许可时,Semaphor ...