题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1298

给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交。相交输出"Yes",否则输出"No"。(三角形的面积大于0)。

 

Input第1行:一个数T,表示输入的测试数量(1 <= T <= 10000),之后每4行用来描述一组测试数据。
4-1:三个数,前两个数为圆心的坐标xc, yc,第3个数为圆的半径R。(-3000 <= xc, yc <= 3000, 1 <= R <= 3000) 
4-2:2个数,三角形第1个点的坐标。 
4-3:2个数,三角形第2个点的坐标。 
4-4:2个数,三角形第3个点的坐标。(-3000 <= xi, yi <= 3000)Output共T行,对于每组输入数据,相交输出"Yes",否则输出"No"。Sample Input

2
0 0 10
10 0
15 0
15 5
0 0 10
0 0
5 0
5 5

Sample Output

Yes
No 基础知识回顾:
点到直线距离公式:

余弦定理:

分析:

对于给定的三角形和圆,我们考虑相交的情况:

① 三角形有一点在圆内,有一点在圆外。

② 三角形有一点在圆上。

③三角形三点都在圆外,但有一条边与圆相交或相切。

前两种情况比较好写,只需要判断三角形三个端点到圆心的距离与半径的关系即可。

对于第三种情况,我们可以先判断圆心到三角形三条边的距离,如果有一条边到圆心的直线距离小于等于半径,我们进而去判断圆心到这条边所在直线的垂足是否在这条边上。如何去判断呢?

我们可以利用余弦定理,只要圆心与这条边的两个端点所成的角均为锐角(即cosα>0),那么垂足必然落在这条边上。

以下是AC代码:

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
struct triangle//用结构体来存三角形三点的坐标
{
double x[],y[];
};
double x,y,r;
triangle a;
//计算(x1,y1)与(x2,y2)之间的距离的平方
double point_dist(double x1,double y1,double x2,double y2)
{
return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
}
//计算圆心(x,y)到直线Ax+By+C=0的距离的平方
double line_dist(double A,double B,double C)
{
double ans = ( (A*x + B*y + C) * (A*x + B*y + C) ) / (A*A + B*B);
return ans > ? ans : -ans;
}
double f(double a,double b,double c)//余弦定理
{
return (b + c - a) / (2.0 * sqrt(b * c));
}
int main()
{
int i,j,t;
cin>>t;
while(t--)
{
//Input
scanf("%lf%lf%lf",&x,&y,&r);
for(i = ;i < ; i++)
scanf("%lf%lf",&a.x[i],&a.y[i]);
//Solve
double dis1[],dis2[],dis3[];
//dis1存放三角形三点到圆心距离的平方
dis1[] = point_dist(x,y,a.x[],a.y[]);
dis1[] = point_dist(x,y,a.x[],a.y[]);
dis1[] = point_dist(x,y,a.x[],a.y[]);
//dis2存放三角形三条边长的平方
dis2[] = point_dist(a.x[],a.y[],a.x[],a.y[]);
dis2[] = point_dist(a.x[],a.y[],a.x[],a.y[]);
dis2[] = point_dist(a.x[],a.y[],a.x[],a.y[]);
//dis3存放三角形三条边到圆心的直线距离的平方
dis3[] = line_dist(a.y[]-a.y[],a.x[]-a.x[],(a.x[]-a.x[])*a.y[]+(a.y[]-a.y[])*a.x[]);
dis3[] = line_dist(a.y[]-a.y[],a.x[]-a.x[],(a.x[]-a.x[])*a.y[]+(a.y[]-a.y[])*a.x[]);
dis3[] = line_dist(a.y[]-a.y[],a.x[]-a.x[],(a.x[]-a.x[])*a.y[]+(a.y[]-a.y[])*a.x[]);
double t1,t2;
t1 = min(dis1[],min(dis1[],dis1[]));//t1为三点到圆心距离最小的那个
t2 = max(dis1[],max(dis1[],dis1[]));//t2为三点到圆心距离最大的那个
if(t1 <= r*r &&t2 >= r*r)//一点在圆内,一点在圆外或有一点在圆上
cout<<"Yes"<<endl;
else if(t1 > r*r)//三点都在圆外
{
if(dis3[] <= r*r)//dis3[0]是由点1和点2连接起来的边到圆心的距离
{
if(f(dis1[],dis2[],dis1[]) > && f(dis1[],dis2[],dis1[]) > )
{
cout<<"Yes"<<endl;
continue;
}
}
if(dis3[] <= r*r)//dis3[1]是由点2和点3连接起来的边到圆心的距离
{
if(f(dis1[],dis2[],dis1[]) > && f(dis1[],dis2[],dis1[]) > )
{
cout<<"Yes"<<endl;
continue;
}
}
if(dis3[] <= r*r)//dis3[2]是由点1和点2连接起来的边到圆心的距离
{
if(f(dis1[],dis2[],dis1[]) > && f(dis1[],dis2[],dis1[]) > )
{
cout<<"Yes"<<endl;
continue;
}
}
cout<<"No"<<endl;
}
else
cout<<"No"<<endl;
}
return ;
}

代码需注意的几点:

① 计算距离时不要用sqrt函数,会导致计算误差WA

② 已知三角形一条边的两端点(x1,y1)(x2,y2),我们将这条边的直线方程斜截式y=kx+b转换为一般式ax+by+c=0所得结果为 (y1-y2)x+(x2-x1)y+(x1-x2)y1+(y2-y1)x1=0,这也是给dis3数组赋值的依据。

												

51nod-1298 圆与三角形(计算几何超详解)的更多相关文章

  1. 51Nod 1298 圆与三角形(计算几何)

    1298 圆与三角形  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交.相交输出"Yes&quo ...

  2. 51nod 1298 圆与三角形——计算几何

    题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1298 转化成判断三条线段和圆是否

  3. 51nod 1298 圆与三角形 (计算几何)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1298 求出圆心到三条线段的最短距离,然后判断是否有顶点在圆外,就把全部情 ...

  4. 51nod 1298:圆与三角形(计算几何)

    题目链接 判断圆和三角形是否相交   可以转化为   判断三条线段是否和圆相交 #include<iostream> #include<cstdio> #include< ...

  5. 51nod 1298 圆与三角形

    给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交.相交输出"Yes",否则输出"No".(三角形的面积大于0).       输入 第1行:一个数 ...

  6. (图论)51NOD 1298 圆与三角形

    给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交.相交输出"Yes",否则输出"No".(三角形的面积大于0).     输入 第1行:一个数T, ...

  7. html5的float属性超详解(display,position, float)(文本流)

    html5的float属性超详解(display,position, float)(文本流) 一.总结 1.文本流: 2.float和绝对定位都不占文本流的位置 3.普通流是默认定位方式,就是依次按照 ...

  8. HTML中DOM核心知识有哪些(带实例超详解)

    HTML中DOM核心知识有哪些(带实例超详解) 一.总结: 1.先取html元素,然后再对他进行操作,取的话可以getElementById等 2.操作的话,可以是innerHtml,value等等 ...

  9. Mysql超详解

    Mysql超详解 一.命令框基本操作及连接Mysql 找到Mysql安装路径,查看版本 同时按快捷键win+R会弹出一个框,在框中输入cmd 点击确定后会出现一个黑框,这是命令框,我们的操作要在这命令 ...

随机推荐

  1. 20145203盖泽双 《Java程序设计》第9周学习总结

    20145203盖泽双 <Java程序设计>第9周学习总结 教材学习内容总结 1.撰写应用程序是利用通信协议对数据库进行指令交换,以进行数据的增删查找. 2.JDBC目的:让Java程序设 ...

  2. 树上差分学习笔记 + [USACO15DEC]最大流$Max \ \ Flow \ \ By$

    #\(\mathcal{\color{red}{Description}}\) \(Link\) \(FJ\)给他的牛棚的\(N(2≤N≤50,000)\)个隔间之间安装了\(N-1\)根管道,隔间编 ...

  3. Android攻城狮学习笔记—入门篇三

    第十章 CheckBox 与其他控件类似 有自己的监听方法 实现监听 并定义被选中或取消后的操作 第十一章 RadioGroup和RadioButton RadioGroup是RadioButton的 ...

  4. 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)

    次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...

  5. HDU 6318 Swaps and Inversions 思路很巧妙!!!(转换为树状数组或者归并求解逆序数)

    Swaps and Inversions Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  6. rem布局简介

    移动端常见布局: 1.流式布局 高度固定,宽度自适应 2.响应式布局 能够用一套代码适应不同尺寸屏幕 3.rem布局 宽高自适应,能实现整个页面像一张图片一样缩放且不失真的效果. rem布局: em: ...

  7. 20155237 2016-2017-2 《Java程序设计》第1周学习总结

    20155237 2016-2017-2 <Java程序设计>第一周学习总结 一.认真学习考核方式,理解成绩构成 考核方式 首先由100分构成:课堂考核12次,实验5次,团队项目(每周进度 ...

  8. 20155212 2016-2017-2 《Java程序设计》第9周学习总结

    20155212 2016-2017-2 <Java程序设计>第9周学习总结 教材学习内容总结 Chapter16 数据库本身是个独立运行的应用程序. 应用程序如何呼叫这组链接库? 不同的 ...

  9. 33 -jQuery 属性操作,文档操作(未完成)

  10. Gitlab+Jenkins学习之路(三)之gitlab权限管理--issue管理

    1.创建Group,User,Project 创建一个组,组名为java Group path http://192.168.56.11/java Visibility Level: #为权限级别,一 ...