题目链接:Click here

Solution:

设\(f(x)\)代表第\(x\)个人送的礼物的数量,\(s(x)\)代表\(f(x)\)的前缀和,即:

\[f(x)=s(x-1)+x^k\\
s(x)=s(x-1)+f(x)\\
s(x)=2\times s(x-1)+x^k
\]

则我们只需求出\(s(n-1)\)即可,\(n\le1e18\),考虑矩阵快速幂优化\(dp\)

这里唯一麻烦的就是\(x^k\),考虑二项式定理:\((x+1)^k=\sum_{i=0}^k{k\choose i}x^{k-i}\)

则我们得到这样的转移:

\[\left[
\begin{matrix}
2&C_k^0&C_k^1&\dots &C_k^k\\
0&C_k^0&C_k^1&\dots &C_k^k\\
0&0&C_{k-1}^0&\dots &C_{k-1}^{k-1}\\
\vdots&\ddots&\dots& &\vdots\\
0&0&0&\dots&C_0^0
\end{matrix}
\right]
\left[
\begin{matrix}
s(x)\\
x^k\\
x^{(k-1)}\\
\vdots\\
x^0
\end{matrix}
\right]
=
\left[
\begin{matrix}
s(x+1)\\
(x+1)^k\\
(x+1)^{(k-1)}\\
\vdots\\
(x+1)^0
\end{matrix}
\right]
\]

Code:

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int mod=1e9+7;
int n,k,c[11][11];
struct Matrix{
int g[12][12],w,h;
void init(){memset(g,0,sizeof(g));}
void org(){for(int i=0;i<12;i++)g[i][i]=1;}
friend Matrix operator *(Matrix a,Matrix b){
Matrix tmp;tmp.w=a.w;tmp.h=b.h;tmp.init();
for(int i=0;i<a.w;i++)
for(int j=0;j<b.h;j++)
for(int k=0;k<a.h;k++)
tmp.g[i][j]=(tmp.g[i][j]+(a.g[i][k]*1ll*b.g[k][j])%mod)%mod;
return tmp;
}
};
Matrix qpow(Matrix a,int b){
Matrix re;re.w=re.h=k+2;
re.init();re.org();
while(b){
if(b&1) re=re*a;
b>>=1;a=a*a;
}return re;
}
int pow(int a,int b){
int re=1;
while(b){
if(b&1) re=(re*1ll*a)%mod;
b>>=1;a=(a*1ll*a)%mod;
}return re;
}
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
signed main(){
n=read(),k=read();
for(int i=0;i<=k;i++) c[i][i]=c[i][0]=1;
for(int i=1;i<=k;i++)
for(int j=1;j<i;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
Matrix trans;trans.w=k+2,trans.h=k+2;
trans.init();trans.g[0][0]=2;
for(int i=1;i<=k+1;i++) trans.g[0][i]=c[k][i-1];
for(int i=1;i<=k+1;i++)
for(int j=i;j<=k+1;j++)
trans.g[i][j]=c[k+1-i][j-i];
if(n==1) return puts("1"),0;
trans=qpow(trans,n-2);
Matrix ans;ans.w=k+2;ans.h=1;ans.init();
for(int i=0;i<=k+2;i++) ans.g[i][0]=1;
ans=trans*ans;printf("%lld\n",(ans.g[0][0]+pow(n%mod,k))%mod);
return 0;
}

「SNOI2017」礼物的更多相关文章

  1. loj2253 「SNOI2017」礼物

    对于一个在位置 \(i\) 的数,他等于 \(i^k+sum_{1,k-1}\). 二项式定理推 \(i^k\),矩阵快速幂即可. #include <iostream> #include ...

  2. AC日记——「HNOI2017」礼物 LiBreOJ 2020

    #2020. 「HNOI2017」礼物 思路: A题进程: 一眼出式子->各种超时过不去->看题解明白还有fft这个东西->百度文库学习fft->学习dft->学习fft ...

  3. loj #2255. 「SNOI2017」炸弹

    #2255. 「SNOI2017」炸弹 题目描述 在一条直线上有 NNN 个炸弹,每个炸弹的坐标是 XiX_iX​i​​,爆炸半径是 RiR_iR​i​​,当一个炸弹爆炸时,如果另一个炸弹所在位置 X ...

  4. loj #2254. 「SNOI2017」一个简单的询问

    #2254. 「SNOI2017」一个简单的询问 题目描述 给你一个长度为 NNN 的序列 aia_ia​i​​,1≤i≤N1\leq i\leq N1≤i≤N,和 qqq 组询问,每组询问读入 l1 ...

  5. loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点

    loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...

  6. 「SNOI2017」一个简单的询问

    「SNOI2017」一个简单的询问 简单的解法 显然可以差分一下. \[get(l,r,x)\times get(l1,r1,x)=get(1,r,x) \times get(1,r1,x)-get( ...

  7. LOJ——#2256. 「SNOI2017」英雄联盟

    https://loj.ac/problem/2256 题目描述 正在上大学的小皮球热爱英雄联盟这款游戏,而且打的很菜,被网友们戏称为「小学生」.现在,小皮球终于受不了网友们的嘲讽,决定变强了,他变强 ...

  8. 「Poetize9」礼物运送

    3055: 礼物运送 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 18  Solved: 12[Submit][Status] Description ...

  9. LOJ2255. 「SNOI2017」炸弹 (线段树)

    本文为线段树做法 (听说可以tarjan缩点+拓扑? 感觉差不多..而且这样看起来方便很多 找到左端点的过程可以看作 点 -> 区间内lowerbound最小的点 -> lowerboun ...

随机推荐

  1. python基础知识0-4

    collection 他是对字典 元组 集合 进行加工的  是计数器 无论 深 ,浅 ,赋值 拷贝 内存地址都不变 赋值也是拷贝的一种 拷贝分两类数字 字符串 另一类: 列表 字典 元组 这一类还分两 ...

  2. 拜托,别再问我 QPS、TPS、PV、UV、GMV、IP、RPS 好吗?

    关于 QPS.TPS.PV.UV.GMV.IP.RPS 这些词语,看起来好像挺专业.但实际上,我认为是这是每个程序员必懂的知识点了,你可以搞不懂它们怎么计算的,但是你最少要知道它们分别代表什么意思吧? ...

  3. 并不对劲的CF1237D&E:Balanced Playlist and Binary Search Trees

    CF1237D Balanced Playlist 题意 有一个长度为\(n\)(\(n\leq 10^5\))的循环播放歌单,每首歌有一个优秀值\(a_i\)(\(a_i\leq 10^9\)). ...

  4. Centos7.3安装Mysql5.7.26(glibc即linux通用版)

    1.检查防火墙是否关闭 //查看防火墙状态 firewall-cmd --state //关闭防火墙 systemctl stop firewalld systemctl disable firewa ...

  5. 怎样在 Vue 的 component 组件中使用 props ?

    1. 在注册一个组件时, 添加一个 props 属性, 将需要添加的 props 作为数组的元素进行添加, 比如下面的例子中, 我们添加了一个变量 name , 他就是一个 props, 我们可以通过 ...

  6. js之运算符(关系运算符)

    关系运算符用于测试两个值之间的关系,根据关系是否存在而返回true或者是false.关系表达式总是返回一个布尔值. 具有如下8个关系运算符:大于(>),小于(<),小于等于(<=), ...

  7. 初识JavaScript对象

    JavaScript对象语法.类型.属性 属性描述符(getOwnPropertyDescriptor().defineProperty()) [[Get]].[[Put]].Getter.Sette ...

  8. 微信小程序常用事件

    bind bind事件绑定不会阻止冒泡事件向上冒泡,catch事件绑定可以阻止冒泡事件向上冒泡. bindtap  跳转页面 bindchange  .value 改变时触发 change 事件 bi ...

  9. python 小记

    判断一个数是奇数还是偶数 #!/usr/bin/env python3 #_*_coding:UTF-8_*_ def pan(num): ==: print( str(num) + ' is: 偶数 ...

  10. 第十章、logging模块

    目录 第十章.logging模块 一.logging模块及日志框架 第十章.logging模块 一.logging模块及日志框架 导入方式 import logging 作用 写日志 模块功能 # V ...