二分类/多分类/多标签

对于二分类来说,必须定义一些matrics(f1_score,roc_auc_score)。在这些case中,缺省只评估正例的label,缺省的正例label被标为1(可以通过配置pos_label参数来完成)

将一个二分类matrics拓展到多分类或多标签问题时,我们可以将数据看成多个二分类问题的集合,每个类都是一个二分类。接着,我们可以通过跨多个分类计算每个二分类metrics得分的均值,这在一些情况下很有用。你可以使用average参数来指定。

  • macro:计算二分类metrics的均值,为每个类给出相同权重的分值。当小类很重要时会出问题,因为该macro-averging方法是对性能的平均。另一方面,该方法假设所有分类都是一样重要的,因此macro-averaging方法会对小类的性能影响很大。
  • weighted: 对于不均衡数量的类来说,计算二分类metrics的平均,通过在每个类的score上进行加权实现。
  • micro: 给出了每个样本类以及它对整个metrics的贡献的pair(sample-weight),而非对整个类的metrics求和,它会每个类的metrics上的权重及因子进行求和,来计算整个份额。Micro-averaging方法在多标签(multilabel)问题中设置,包含多分类,此时,大类将被忽略。
  • samples:应用在 multilabel问题上。它不会计算每个类,相反,它会在评估数据中,通过计算真实类和预测类的差异的metrics,来求平均(sample_weight-weighted)
  • average:average=None将返回一个数组,它包含了每个类的得分.

多分类(multiclass)数据提供了metric,和二分类类似,是一个label的数组,而多标签(multilabel)数据则返回一个索引矩阵,当样本i具有label j时,元素[i,j]的值为1,否则为0.

sklearn.metrics import precision_recall_fscore_support的更多相关文章

  1. [sklearn]性能度量之AUC值(from sklearn.metrics import roc_auc_curve)

    原创博文,转载请注明出处! 1.AUC AUC(Area Under ROC Curve),即ROC曲线下面积. 2.AUC意义 若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优于 ...

  2. sklearn.metrics.mean_absolute_error

    注意多维数组 MAE 的计算方法 * >>> from sklearn.metrics import mean_absolute_error >>> y_true ...

  3. sklearn.metrics中的评估方法

    https://www.cnblogs.com/mindy-snail/p/12445973.html 1.confusion_matrix 利用混淆矩阵进行评估 混淆矩阵说白了就是一张表格- 所有正 ...

  4. Python Sklearn.metrics 简介及应用示例

    Python Sklearn.metrics 简介及应用示例 利用Python进行各种机器学习算法的实现时,经常会用到sklearn(scikit-learn)这个模块/库. 无论利用机器学习算法进行 ...

  5. sklearn.metrics中的评估方法介绍(accuracy_score, recall_score, roc_curve, roc_auc_score, confusion_matrix)

    1 accuracy_score:分类准确率分数是指所有分类正确的百分比.分类准确率这一衡量分类器的标准比较容易理解,但是它不能告诉你响应值的潜在分布,并且它也不能告诉你分类器犯错的类型.常常误导初学 ...

  6. 量化预测质量之分类报告 sklearn.metrics.classification_report

    classification_report的调用为:classification_report(y_true, y_pred, labels=None, target_names=None, samp ...

  7. sklearn.metrics.roc_curve使用说明

    roc曲线是机器学习中十分重要的一种学习器评估准则,在sklearn中有完整的实现,api函数为sklearn.metrics.roc_curve(params)函数. 官方接口说明:http://s ...

  8. sklearn.metrics.roc_curve

    官方网址:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics 首先认识单词:metrics: ['mɛ ...

  9. 特征选取1-from sklearn.feature_selection import SelectKBest

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

随机推荐

  1. CH1806 Matrix

    题意 描述 给定一个M行N列的01矩阵(只包含数字0或1的矩阵),再执行Q次询问,每次询问给出一个A行B列的01矩阵,求该矩阵是否在原矩阵中出现过. 输入格式 第一行四个整数M,N,A,B. 接下来一 ...

  2. NOIP模拟赛(洛谷11月月赛)

    T1  终于结束的起点 题解:枚举啊... 斐波那契数 第46个爆int,第92个爆long long.... 发现结果一般是m的几倍左右....不用担心T. #include<iostream ...

  3. 转 How do GraphQL remote schemas work

    文章转自 prisma 官方博客,写的很不错 In this article, we want to understand how we can use any existing GraphQL AP ...

  4. centeros php 实战

    apache 默认安装路径 Fedora Core, CentOS, RHEL:ServerRoot              ::      /etc/httpdPrimary Config Fle ...

  5. Mysql中谓词使用date_format的优化

    优化前: SELECT a.* FROM t1 a, (SELECT obj_id,MAX(PRE_DETAIL_INST_ID) PRE_DETAIL_INST_ID FROM t1 WHERE D ...

  6. bzoj 1002 [FJOI2007]轮状病毒——打表找规律

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1002 看 Zinn 的博客:https://www.cnblogs.com/Zinn/p/9 ...

  7. php删除制定文件及文件夹

    php遍历一个文件夹内的所有文件和文件夹,并删除所有文件夹和子文件夹下的所有文件的代码,通过递归方式实现达到清空一个目录的效果,代码简单实用. 用到的函数: scandir($path) 遍历一个文件 ...

  8. C++中如何强制inline函数(MSVC, GCC)

    #ifdef _MSC_VER_ // for MSVC #define forceinline __forceinline #elif defined __GNUC__ // for gcc on ...

  9. [Python] numpy.ndarray.shape

    ndarray.shape Tuple of array dimensions. x = np.array([1, 2, 3, 4]) print x.shape #(4, ) y = np.zero ...

  10. apache配置https和http的时候You don't have permission to access / on this server.

    You don't have permission to access / on this server. 是由于没有设置访问目录 今天配置httpd-ssl.conf的时候  发现这个问题 由于默认 ...