洛谷P1273 有线电视网 【树上分组背包】
题目描述
某收费有线电视网计划转播一场重要的足球比赛。他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点。
从转播站到转播站以及从转播站到所有用户终端的信号传输费用都是已知的,一场转播的总费用等于传输信号的费用总和。
现在每个用户都准备了一笔费用想观看这场精彩的足球比赛,有线电视网有权决定给哪些用户提供信号而不给哪些用户提供信号。
写一个程序找出一个方案使得有线电视网在不亏本的情况下使观看转播的用户尽可能多。
输入输出格式
输入格式:
输入文件的第一行包含两个用空格隔开的整数N和M,其中2≤N≤3000,1≤M≤N-1,N为整个有线电视网的结点总数,M为用户终端的数量。
第一个转播站即树的根结点编号为1,其他的转播站编号为2到N-M,用户终端编号为N-M+1到N。
接下来的N-M行每行表示—个转播站的数据,第i+1行表示第i个转播站的数据,其格式如下:
K A1 C1 A2 C2 … Ak Ck
K表示该转播站下接K个结点(转播站或用户),每个结点对应一对整数A与C,A表示结点编号,C表示从当前转播站传输信号到结点A的费用。最后一行依次表示所有用户为观看比赛而准备支付的钱数。
输出格式:
输出文件仅一行,包含一个整数,表示上述问题所要求的最大用户数。
输入输出样例
5 3
2 2 2 5 3
2 3 2 4 3
3 4 2
2
说明
样例解释

如图所示,共有五个结点。结点①为根结点,即现场直播站,②为一个中转站,③④⑤为用户端,共M个,编号从N-M+1到N,他们为观看比赛分别准备的钱数为3、4、2,从结点①可以传送信号到结点②,费用为2,也可以传送信号到结点⑤,费用为3(第二行数据所示),从结点②可以传输信号到结点③,费用为2。也可传输信号到结点④,费用为3(第三行数据所示),如果要让所有用户(③④⑤)都能看上比赛,则信号传输的总费用为:
2+3+2+3=10,大于用户愿意支付的总费用3+4+2=9,有线电视网就亏本了,而只让③④两个用户看比赛就不亏本了。
题解
这道题巧的地方就是将选择性最优问题转化为分组背包问题
我们把每个转输站看做一个背包,那么接下来它就有它的几个儿子的某种状态装进去
设f[i][j]表示i号节点往下到达j个用户的最大收益,那么有
f[i][j] = max(f[i][j],f[i][j - k] + f[to][k] - edge.k);
k表示装入这个节点到达k个用户的情况
按照分组背包的写法就好了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
using namespace std;
const int maxn = 3005,maxm = 10005,INF = 2000000000; inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1;c = getchar();}
while (c >= 48 &&c <= 57) {out = out * 10 + c - 48;c = getchar();}
return out * flag;
} int N,M,fee[maxn]; int head[maxn],nedge = 0;
struct EDGE{
int to,w,next;
}edge[maxm]; inline void build(int u,int v,int w){
edge[nedge] = (EDGE) {v,w,head[u]};
head[u] = nedge++;
} void init(){
fill(head,head + maxn,-1);
N = read();
M = read();
int K,to,w;
for (int i = 1; i <= N - M; i++){
K = read();
while (K--){
to = read();
w = read();
build(i,to,w);
}
}
for (int i = N - M + 1; i <= N; i++)
fee[i] = read();
} int siz[maxn],f[maxn][maxn]; void dfs(int u){
fill(f[u],f[u] + maxn,-INF);
f[u][0] = 0;
if (u > N - M){
siz[u] = 1;
f[u][1] = fee[u];
}
else {
int to;
siz[u] = 0;
for (int k = head[u]; k != -1; k = edge[k].next){
dfs(to = edge[k].to);
for (int i = siz[u]; i >= 0; i--)
for (int j = siz[to]; j >= 0; j--)
f[u][i + j] = max(f[u][i + j],f[u][i] + f[to][j] - edge[k].w);
siz[u] += siz[to];
}
}
} void print(){
for (int i = siz[1]; i > 0; i--)
if (f[1][i] >= 0){
cout<<i<<endl;
return;
}
cout<<0<<endl;
} int main(){
init();
dfs(1);
print();
return 0;
}
洛谷P1273 有线电视网 【树上分组背包】的更多相关文章
- 洛谷P1273 有线电视网 (树上分组背包)
洛谷P1273 有线电视网 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节 ...
- 洛谷P1273 有线电视网 树上分组背包DP
P1273 有线电视网 )逼着自己写DP 题意:在一棵树上选出最多的叶子节点,使得叶子节点的值 减去 各个叶子节点到根节点的消耗 >= 0: 思路: 树上分组背包DP,设dp[u][k] 表示 ...
- 洛谷 P1273 有线电视网(树形背包)
洛谷 P1273 有线电视网(树形背包) 干透一道题 题面:洛谷 P1273 本质就是个背包.这道题dp有点奇怪,最终答案并不是dp值,而是最后遍历寻找那个合法且最优的\(i\)作为答案.dp值存的是 ...
- 洛谷 P1273 有线电视网
2016-05-31 13:25:45 题目链接: 洛谷 P1273 有线电视网 题目大意: 在一棵给定的带权树上取尽量多的叶子节点,使得sigma(val[选择的叶子节点])-sigma(cost[ ...
- 【题解】洛谷P1273 有线电视网(树上分组背包)
次元传送门:洛谷P1273 思路 一开始想的是普通树形DP 但是好像实现不大好 观摩了一下题解 是树上分组背包 设f[i][j]为以i为根的子树中取j个客户得到的总价值 我们可以以i为根有j组 在每一 ...
- 洛谷——P1273 有线电视网
P1273 有线电视网 题目大意: 题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树 ...
- C++ 洛谷 P1273 有线电视网 题解
P1273 有线电视网 很明显,这是一道树形DP(图都画出来了,还不明显吗?) 未做完,持续更新中…… #include<cstdio> #include<cstring> ...
- 洛谷 P1273 有线电视网 && caioj 1109 树形动态规划(TreeDP)4:比赛转播(树上分组背包总结)
从这篇博客往前到二叉苹果树都可以用分组背包做 这依赖性的问题,都可以用于这道题类似的方法来做 表示以i为根的树中取j个节点所能得的最大价值 那么每一个子树可以看成一个组,每个组里面取一个节点,两个节点 ...
- [洛谷P1273] 有线电视网
类型:树形背包 传送门:>Here< 题意:给出一棵树,根节点在转播足球赛,每个叶子节点是一个观众在收看.每个叶子结点到根节点的路径权值之和是该点转播的费用,每个叶子节点的观众都会付val ...
随机推荐
- Scrapy爬取美女图片第四集 突破反爬虫(上)
本周又和大家见面了,首先说一下我最近正在做和将要做的一些事情.(我的新书<Python爬虫开发与项目实战>出版了,大家可以看一下样章) 技术方面的事情:本次端午假期没有休息,正在使用fl ...
- ffmpeg 压缩H265 Windows 硬件编码
硬件NVIDIA:ffmpeg.exe -i input.avi -c:v hevc_nvenc -preset:v fast output.mp4 软件 :ffmpeg.exe - ...
- 纯CSS3实现旋转木马
test.html: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> ...
- Django——多网页网站及网页互联
在helloapp文件夹下添加名为templates的文件夹(此文件夹名称是固定的),并在其下添加html文件,文件内容根据自己网页想呈现的内容而定 在views文件内添加新的函数 在urls文件内添 ...
- 算法工程师进化-NLP之主题模型
1 引言 主题模型是文本挖掘的重要工具,近年来在学术界和工业届都获得了非常多的关注.学术界的工作主要集中在建模层面,即提出各种各样的主题模型来适应不同的场景,因此缺乏指导主题模型在工业场景落地的资源和 ...
- 袋鼠云旗下新公司云掣科技启航,深耕云MSP业务助推企业数字化转型
1983年3月15日,国际消费者联盟组织将3月15日确立为国际消费者权益日. 2019年3月15日,袋鼠云举办三周年年会. 一生二,二生三,三生万物.植树节后,万物生长. 年会现场,袋鼠云宣布成立新公 ...
- Python基础灬函数(定义,参数)
函数 函数定义 # 定义一个计算绝对值的函数 def cal_abs(x): if x >= 0: return x else: return -x # 调用函数 print('-1的绝对值是: ...
- Github二次学习
作者声明:本博客中所写的文章,都是博主自学过程的笔记,参考了很多的学习资料,学习资料和笔记会注明出处,所有的内容都以交流学习为主.有不正确的地方,欢迎批评指正. 本节课视频内容:https://www ...
- PHP开发中常见的漏洞及防范
PHP开发中常见的漏洞及防范 对于PHP的漏洞,目前常见的漏洞有五种.分别是Session文件漏洞.SQL注入漏洞.脚本命令执行漏洞.全局变量漏洞和文件漏洞.这里分别对这些漏洞进行简要的介绍和防范. ...
- oracle数据库 expdp/impdp 和 exp/imp
--EXPDP导出,需要系统用户权限,一般不使用--sqlplus--1.创建dmp导出逻辑目录 create directory 目录名 as '目录路径' create directory exp ...