费马定理的逆定理几乎可以用来判断一个数是否为素数,但是有一些数是判断不出来的,因此,Miller_Rabin测试方法对费马的测试过程做了改进,克服其存在的问题。

推理过程如下(摘自维基百科):

摘自另一篇博文(手动滑稽):

原理明白了,就直接上代码了(KuangBin大神的板子):

代码思路是,

  • Miller_Rabin()函数随机选取 s 个a,a用做“基底”
  • check() 函数是用来判断x是否等于1,也就是判断a是否是n的凭证。
  • Mul_mod()函数是 快速乘 ,求 a^t % n 之后的值是否为正负一,因为两个数直接乘的话会很大,可能会爆Long Long, 因此用快速乘边乘边mod。
  • pow_mod()函数是 快速幂 ,在刚开始第一次判断 a^(n-1) % n 时会用到。
 /* *************************************************
* Miller_Rabin 算法进行素数测试
* 速度快可以判断一个 < 2^63 的数是不是素数
*
**************************************************/
const int S = ; //随机算法判定次数一般 8 ∼ 10 就够了
// 计算 ret = (a*b)%c
//a,b,c < 2^63
long long mult_mod(long long a,long long b,long long c)
{
a %= c;
b %= c;
long long ret = ;
long long tmp = a;
while(b)
{
if(b & )
{
ret += tmp;
if(ret > c)ret -= c;//直接取模慢很多
}
tmp <<= ;
if(tmp > c)tmp -= c;
b >>= ;
}
return ret;
}
// 计算 ret = (a^n)%mod
long long pow_mod(long long a,long long n,long long mod)
{
long long ret = ;
long long temp = a%mod;
while(n)
{
if(n & )ret = mult_mod(ret,temp,mod);
temp = mult_mod(temp,temp,mod);
n >>= ;
}
return ret;
}
// 通过 a^(n − 1)=1(mod n)来判断 n 是不是素数
// n − 1 = x ∗ 2 t 中间使用二次判断
// 是合数返回 true, 不一定是合数返回 false
bool check(long long a,long long n,long long x,long long t)
{
long long ret = pow_mod(a,x,n);
long long last = ret;
for(int i = ; i <= t; i++)
{
ret = mult_mod(ret,ret,n);
if(ret == && last != && last != n - )return true;//合数
last = ret;
}
if(ret != )return true;
else return false;
}
//**************************************************
// Miller_Rabin 算法
// 是素数返回 true,(可能是伪素数)
// 不是素数返回 false
//**************************************************
bool Miller_Rabin(long long n)
{
if( n < )return false;
if( n == )return true;
if( (n&) == )return false;//偶数
long long x = n - ;
long long t = ;
while( (x&)== )
{
x >>= ;
t++;
}
srand(time(NULL));/* *************** */
for(int i = ; i < S; i++)
{
long long a = rand()%(n - ) + ;
if( check(a,n,x,t) )
return false;
}
return true;
}

Miller_Rabin 素数测试的更多相关文章

  1. 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case ...

  2. hdu 6169 Senior PanⅡ Miller_Rabin素数测试+容斥

    Senior PanⅡ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) Pr ...

  3. Miller_Rabin素数测试【学习笔记】

    引语:在数论中,对于素数的研究一直就很多,素数测试的方法也是非常多,如埃式筛法,6N±1法,或者直接暴力判(试除法).但是如果要判断比较大的数是否为素数,那么传统的试除法和筛法都不再适用.所以我们需要 ...

  4. Miller_Rabin素数测试

    #include<iostream> #include<cmath> #include<cstdio> #include<cstring> #inclu ...

  5. 数学:随机素数测试(Miller_Rabin算法)和求整数素因子(Pollard_rho算法)

    POJ1811 给一个大数,判断是否是素数,如果不是素数,打印出它的最小质因数 随机素数测试(Miller_Rabin算法) 求整数素因子(Pollard_rho算法) 科技题 #include< ...

  6. Miiler-Robin素数测试与Pollard-Rho大数分解法

    板题 Miiler-Robin素数测试 目前已知分解质因数以及检测质数确定性方法就只能\(sqrt{n}\)试除 但是我们可以基于大量测试的随机算法而有大把握说明一个数是质数 Miler-Robin素 ...

  7. Miller-Rabin素数测试算法(POJ1811Prime Test)

    题目链接:http://poj.org/problem?id=1811 题目解析:2<=n<2^54,如果n是素数直接输出,否则求N的最小质因数. 求大整数最小质因数的算法没看懂,不打算看 ...

  8. poj 1811 Prime Test 大数素数测试+大数因子分解

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 27129   Accepted: 6713 Case ...

  9. Miller-Rabbin随机性素数测试算法

    //**************************************************************** // Miller_Rabin 算法进行素数测试 //速度快,而且 ...

随机推荐

  1. Android 公共库的建立方法

    本文主要介绍在android工程中如何将共用代码建成公共包方便其他工程引用.引用后的工程结构分析.library引入方式的优缺点. 自己也写了一些android公共的库,有兴趣的可以参考 Trinea ...

  2. Linux内核读书笔记第二周

    什么是系统调用 简单来说,系统调用就是用户程序和硬件设备之间的桥梁.用户程序在需要的时候,通过系统调用来使用硬件设备. 系统调用的存在,有以下重要的意义: 1)用户程序通过系统调用来使用硬件,而不用关 ...

  3. 冲刺Two之站立会议8

    今天对软件进行了用户试用,找了一些同学让他们试用软件之后对软件给出了建议,这样我们可以在一定程度上对它进行进一步地优化.

  4. Sprint计划会议内容

    项目名称:蹭课神器 会议内容 首先我们讨论了项目的工作量及实施流程 一.工作认领 二.界面的总体规划 三.主要功能的设计 四.设计数据库 五.编写项目报告 六.软件测试和推广 然后我们进行了工作认领, ...

  5. 第三次作业--导入excel表格(完整版)

    031302322 031302316 将教师排课表导入系统 使用powerdesigner设计数据库表格 设计概念模型 打开new -> Conceptual Data Model创建概念模型 ...

  6. spring整合redis(jedis)

    真是一步一个坑阿,学点新技术,这么难,这个异常: java.lang.IllegalStateException: Could not load TestContextBootstrapper [nu ...

  7. Linux下利用json-c从一个json数组中提取每一个元素中的部分字段组成一个新json数组

    先把代码贴上来,有时间整理一下 首先说一下要实现的功能: 假定现在有一个json格式的字符串,而且他是一个josn中的数组,比如: [ { "id": "NEW20170 ...

  8. Mysql 间隙锁原理,以及Repeatable Read隔离级别下可以防止幻读原理(百度)

    Mysql知识实在太丰富了,前几天百度的面试官问我MySql在Repeatable Read下面是否会有幻读出现,我说按照事务的特性当然会有, 但是面试官却说 Mysql 在Repeatable Re ...

  9. 用send_keys输入文本的方法

    我们使用app时,输入文字都是调用软键盘.在自动化测试中当然也可以调用软键盘,但是由于输入法设计上的差异,有时候不能达到很好的效果. 例如,搜狗拼音输入法: 选择4-咖啡,然而多打几次,输入法就把“咖 ...

  10. 【版本管理】自定义git

    Git除了可配置user.name和user.email外,实际上,Git还有很多可配置项. 如 $ git config --global color.ui true,让Git显⽰示颜⾊色,会让命令 ...