给出一个有向无环图,起点为1终点为N,每条边都有一个长度,并且从起点出发能够到达所有的点,所有的点也都能够到达终点。绿豆蛙从起点出发,走向终点。 到达每一个顶点时,如果有K条离开该点的道路,绿豆蛙可以选择任意一条道路离开该点,并且走向每条路的概率为 1/K 。 现在绿豆蛙想知道,从起点走到终点的所经过的路径总长度期望是多少?

咕咕咕了大量知识点的总结后,写一篇题的解题报告

在被lyd的大量BT例题虐杀后,看到这么一道题,那是激动,直接秒了(假假

题解:

f[x]表示以x为起点走到终点的路径总长度期望
设从x连出去的边y1, y2, y3, ..., yk, 路径长度为z1, z2, z3, ..., zk
很容易想到式子为:
f[x] = 1/k * Σ(f[yi]+zi)(1<=i<=k)
意会一下觉得需要建一个反图
然后在反图上执行拓扑排序,在拓扑排序的同时计算期望

 #include<bits/stdc++.h>
#define ll long long
#define ld long double
#define uint unsigned int
using namespace std;
const int maxn = , maxm = ;
struct shiki {
int y, net, val;
}e[maxm << ];
int lin[maxn], len = ;
int n, m;
int K[maxn], in[maxn];
double f[maxn];
queue<int> q; inline int read() {
int x = , y = ;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') y = -;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << ) + (x << ) + ch - '';
ch = getchar();
}
return x * y;
} inline void insert(int xx, int yy, int v) {
e[++len].y = yy;
e[len].net = lin[xx];
e[len].val = v;
lin[xx] = len;
} int main() {
// freopen("test.in", "r", stdin);
// freopen("test.out", "w", stdout);
n = read(), m = read();
for(register uint i = ; i <= m; ++i) {
int x = read(), y = read(), z = read();
insert(y, x, z);
K[x]++, in[x]++;//反图上连向x的边数和反图上x的入度,也就是原图x连出的边数和x的出度
}
q.push(n);
while(!q.empty()) {
int k = q.front(); q.pop();
for(int i = lin[k]; i; i = e[i].net) {
int to = e[i].y;
f[to] += (f[k] + e[i].val) / K[to];
in[to]--;
if(!in[to]) q.push(to);
}
}
printf("%0.2f", f[]);
return ;
}

Tyvj1933绿豆蛙的归宿的更多相关文章

  1. 【BZOJ3036】绿豆蛙的归宿 拓补排序+概率

    [BZOJ3036]绿豆蛙的归宿 Description 随着新版百度空间的下线,Blog宠物绿豆蛙完成了它的使命,去寻找它新的归宿. 给出一个有向无环的连通图,起点为1终点为N,每条边都有一个长度. ...

  2. BZOJ3036: 绿豆蛙的归宿&Wikioi2488:绿豆蛙的归宿

    3036: 绿豆蛙的归宿 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 108  Solved: 73[Submit][Status] Descript ...

  3. BZOJ 3036: 绿豆蛙的归宿( 期望dp )

    从终点往起点倒推 . 在一个图 考虑点 u , 出度为 s : s = 0 , d[ u ] = 0 ; s ≠ 0 , 则 d( u ) = ( ∑ d( v ) ) / s ( ( u , v ) ...

  4. BZOJ3036绿豆蛙的归宿

    BZOJ3036绿豆蛙的归宿 锲下陟凝 褰宓万 郝瓦痕膳 叶诙摞 А知π剧 椐猊∫距 屠缲佗 ゲ蕖揪 俜欧彖鹤 磲砩ほ #琛扶 觅电闸ス 捆鳢げ 浜窠 魂睨"烁 蕞滗浼 洒ヂ跪 ...

  5. [COGS 1065] 绿豆蛙的归宿

    先贴题面w 1065. [Nescafe19] 绿豆蛙的归宿 ★   输入文件:ldfrog.in   输出文件:ldfrog.out   简单对比时间限制:1 s   内存限制:128 MB 随着新 ...

  6. P4316 绿豆蛙的归宿(期望)

    P4316 绿豆蛙的归宿 因为非要用bfs所以稍微麻烦一点qwq(大家用的都是dfs) 其实问题让我们求的就是经过每条边的概率*边权之和 我们可以用bfs把图遍历一遍处理概率,顺便把每条边的概率*边权 ...

  7. 【BZOJ 3036】 3036: 绿豆蛙的归宿 (概率DP)

    3036: 绿豆蛙的归宿 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 491  Solved: 354 Description 随着新版百度空间的下线 ...

  8. [cogs1065]绿豆蛙的归宿

    1065. [Nescafe19] 绿豆蛙的归宿 [题目描述] 给出一个有向无环的连通图,起点为1终点为N,每条边都有一个长度.绿豆蛙从起点出发,走向终点.到达每一个顶点时,如果有K条离开该点的道路, ...

  9. codevs 2488 绿豆蛙的归宿

    2488 绿豆蛙的归宿 http://codevs.cn/problem/2488/  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 黄金 Gold   题目描述 Descrip ...

随机推荐

  1. Fire! (双bfs+预处理)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  2. 如何使用webpack打包你的项目

    webpack是前端开发中比较常用的打包工具之一,另外还有gulp,grunt.之前没有涉及过打包这块,这里介绍一下使用webpack打包的流程. Grunt和Gulp的工作方式是:在一个配置文件中, ...

  3. Python 对象模型 -- (转)

    面向对象的纯粹性 在很久很久以前,C++还被称为面向对象语言(现在一般称为多范式通用语言),人们就对C++的面向对象的纯粹性提出了质疑,主要有以下几点: 并非所有的对象都是对象(很拗口?),比如指针本 ...

  4. jeecg3.7中DictSelect数据字典下拉选择框的用法

    1.参数 属性名                      类型        描述                                                           ...

  5. 用python玩微信(聊天机器人,好友信息统计)

    1.用 Python 实现微信好友性别及位置信息统计 这里使用的python3+wxpy库+Anaconda(Spyder)开发.如果你想对wxpy有更深的了解请查看:wxpy: 用 Python 玩 ...

  6. js 验证ip列表

    如题. <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title ...

  7. printk一些技巧【转】

    转自:http://haohetao.iteye.com/blog/1147791 转自:http://blog.csdn.net/wbd880419/article/details/73530550 ...

  8. pxc群集搭建

    pxc群集搭建 1.环境 Percona-XtraDB 5.7.22-22-29.26-log percona-xtrabackup-24-2.4.12 192.168.99.210:3101(第一节 ...

  9. 自定义shell开头PS1

    vim /etc/profile export PS1="flag:\W \u\$" \h是主机名,并不全,域 \W是当前所在目录名 \u 是当前shell用户名

  10. 剑指offer-高质量的代码

    小结: 规范性:书写清晰.布局清晰.命名合理 完整性:完成基本功能.考虑边界条件.做好错误处理 鲁棒性:采取防御性编程.处理无效输入 面试这需要关注 输入参数的检查 错误处理和异常的方式(3种) 命名 ...