BZOJ4487 JSOI2015染色问题(组合数学+容斥原理)
逐个去除限制。第四个限制显然可以容斥,即染恰好c种颜色的方案数=染至多c种颜色的方案数-染至多c-1种颜色的方案数+染至多c-2种颜色的方案数……
然后是限制二。同样可以容斥,即恰好选n行的方案数=至多选n行的方案数-至多选n-1行的方案数+至多选n-2行的方案数……
限制三同理。即容斥套容斥套容斥。复杂度O(nmc)。
注意到容斥式子和二项式定理有千丝万缕的联系,用二项式定理去掉一维变成O(nclogm)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 410
#define P 1000000007
int n,m,c,ans,C[N][N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4487.in","r",stdin);
freopen("bzoj4487.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),c=read();
C[][]=;
for (int i=;i<=;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j]+C[i-][j-])%P;
}
for (int i=c;i>=;i--)
for (int j=n;j>=;j--)
if ((c-i+n-j+m&)^(m&)) inc(ans,P-1ll*C[c][i]*C[n][j]%P*ksm(ksm(i+,j)-,m)%P);
else inc(ans,1ll*C[c][i]*C[n][j]%P*ksm(ksm(i+,j)-,m)%P);
cout<<ans;
return ;
}
BZOJ4487 JSOI2015染色问题(组合数学+容斥原理)的更多相关文章
- 2019.02.09 bzoj4487: [Jsoi2015]染色问题(容斥原理)
传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k ...
- BZOJ4487 [Jsoi2015]染色问题
BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(- ...
- [bzoj4487][Jsoi2015]染色_容斥原理
染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的 ...
- bzoj4487[Jsoi2015]染色问题 容斥+组合
4487: [Jsoi2015]染色问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 211 Solved: 127[Submit][Status ...
- [BZOJ4487][JSOI2015]染色问题(容斥)
一开始写了7个DP方程,然后意识到这种DP应该都会有一个通式. 三个条件:有色行数为n,有色列数为m,颜色数p,三维容斥原理仍然成立. 于是就是求:$\sum_{i=0}^{n}\sum_{j=0}^ ...
- 【BZOJ4487】[JSOI2015]染色问题(容斥)
[BZOJ4487][JSOI2015]染色问题(容斥) 题面 BZOJ 题解 看起来是一个比较显然的题目? 首先枚举一下至少有多少种颜色没有被用到过,然后考虑用至多\(k\)种颜色染色的方案数. 那 ...
- BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理
BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理 Description 给定方程 X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A ...
- HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举)
HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举) 题意分析 求在[1,n-1]中,m个整数的倍数共有多少个 与 UVA.10325 ...
- UVA.10325 The Lottery (组合数学 容斥原理 二进制枚举)
UVA.10325 The Lottery (组合数学 容斥原理) 题意分析 首先给出一个数n,然后给出m个数字(m<=15),在[1-n]之间,依次删除给出m个数字的倍数,求最后在[1-n]之 ...
随机推荐
- rhel7-NFS服务搭建
检查服务: [root@localhost ~]# systemctl status nfs● nfs-server.service - NFS server and services Loade ...
- Vue插槽 slot
1. 什么是插槽 插槽slot 是往父组件中插入额外内容,实现组件的复用,一个插槽插入到一个对应的标签中 2. 实例: 一个组件中不允许有两个匿名插槽 </head> <body&g ...
- PHP命令行(CLI模式)
CLI模式 CLI模式其实就是命令行运行模式,英文全称Command-Line Interface(命令行接口) $ php -h Usage: php [options] [-f] <file ...
- Promise 的基础用法
Promise 的含义 Promise 是异步编程的一种解决方案,比传统的解决方案–回调函数和事件--更合理和更强大.它由社区最早提出和实现,ES6将其写进了语言标准,统一了语法,原生提供了Promi ...
- mysql 5.7 配置初始化及修改 ROOT 用户密码
1.修改配置文件 my.ini 放在 mysql\bin [mysqld] basedir=C:\Mysql datadir=C:\Mysql\data port=3306 # server_id = ...
- Sql Server 游标概念与实例
引言 先不讲游标的什么概念,看如下Sql Server2008 图例: 需求:两张表的O_ID是一一对应的,现在求将加薪的工资+原来的工资=现在的工资,也就是O_Salary=O_Salary+A_S ...
- Hadoop:WordCount分析
相关代码: package com.hadoop; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.P ...
- Python: 列表的两种遍历方法
方法一:以列表中元素的下标进行访问 def traverse1(list1): for i in range(len(list1)): print(list1[i], end=' ') print() ...
- js学习日记-new Object和Object.create到底干了啥
function Car () { this.color = "red"; } Car.prototype.sayHi=function(){ console.log('你好') ...
- dell raid配置
常用查看命令:待有dell裸机环境会详细列出 megacli -LDInfo -Lall -aALL 查raid级别 megacli -AdpAllInfo -aALL 查raid卡信息 megacl ...