题目简介:给定一个带权有向图,再给定图中一个顶点(源点),求该点到其他所有点的最短距离,称为单源最短路径问题。

如下图,求点1到其他各点的最短距离

准备工作:以下为该题所需要用到的数据

int N; //保存顶点个数

int M; //保存边个数

int max; //用来设定一个比所有边的权都大的值,来表示两点间没有连线

int[] visit; //找到一个顶点的最短距离,就把它设为1,默认为0(即还没有找到)

int[][] distance; //保存图中个边的值,两点间无边则设为max

int[] bestmin;  //保存源点到其他各点的最短距离,用于最后输出

String[] path;  //有些题目会要求输出路径,保存输出路径

算法步骤:

①找出与源点距离最短的那个点,即遍历distance[1][1],distance[1][2],.....distance[1][N]中的最小值,如题:

源点1到2,4,5的距离分别为10,30,100,。3无法直接到达即此时distance[1][3] = max。那么这一步找出的点就是

顶点2。此时distance[1][2]即为源点1到顶点2的最短距离。将visit[2]设为1(顶点2完成)。

②松弛操作,

以①找出的点作为中心点(此时为顶点2),去遍历visit[i]为0的点,如果distance[1][2] + distance[2][i] < distance[1][i]

就把新的较短路径赋值给它,即distance[1][i] = distance[1][2] + distance[2][i],

此时顶点2能到达的点只有顶点3,并且distance[1][3] = max ,所以更新distance[1][3]的值为distance[1][2] + distance[2][3] = 60

完成以上两个步骤后回到步骤①,即这是个循环,每次循环能找出一个最短距离的点和更新其他点,所以该循环要遍历

N-1次就可以把所有点最短距离找出,大概过程如下:

for(int i = 2; i <= N; i++) {

  步骤①(在一个循环内找到距离最短的点)

  步骤②(以①找到的点为中心,通过一个循环更新所有visit[i]为0的点到源点的距离)

}

完整代码如下:

package algorithm;
import java.util.Scanner;
public class Dijkstra__Single_Source_Shortest_Path { private static int N;
private static int M;
private static int max;
private static int[] visit;
private static int[][] distance;
private static int[] bestmin;
private static String[] path; public static void Dijkstra() {
visit[1] = 1;
bestmin[1] = 0; //大循环(搞定这里就算搞定该算法了,后面的输出什么的可以不看)
for(int l = 2; l <= N; l++) {
int Dtemp = max;
int k = -1; //步骤①
for(int i = 2; i <= N; i++) {
if(visit[i] == 0 && distance[1][i] < Dtemp) {
Dtemp = distance[1][i];
k = i;
}
}
visit[k] = 1;
bestmin[k] = Dtemp; //步骤②
for(int i = 2; i <= N; i++) {
if(visit[i] == 0 && (distance[1][k] + distance[k][i]) < distance[1][i]) {
distance[1][i] = distance[1][k] + distance[k][i];
path[i] = path[k] + "-->" + i;
}
}
} //输出路径
for(int i=1;i<=N;i++) {
System.out.println("从"+1+"出发到"+i+"的最短路径为:"+path[i]);
}
System.out.println("=====================================");
for(int i = 1; i <= N; i++) {
System.out.println("从1出发到" + i + "点的最短距离为:" + bestmin[i]);
}
}
public static void main(String[] args) {
// TODO Auto-generated method stub Scanner input = new Scanner(System.in);
System.out.print("请输入节点个数N,路径总数M: ");
N = input.nextInt();
M = input.nextInt();
max = 10000;
bestmin = new int[N+1];
distance = new int [N+1][N+1];
visit = new int[N+1];
path=new String[N+1]; for(int i = 1; i <= N; i++) {
for(int j = 1; j <= N; j++) {
if(i == j) {
distance[i][j] = 0;
}else {
distance[i][j] = max;
}
}
bestmin[i] = max;
path[i] = new String("1-->" + i);
} System.out.println("请输入" + M +"条数据x,y,z(表示x点到y点的距离为z):");
for(int i = 1; i <= M; i++) {
int x = input.nextInt();
int y = input.nextInt();
int z = input.nextInt();
distance[x][y] = z;
}
input.close(); Dijkstra();
} }

运行结果如下:

JAVA之单源最短路径(Single Source Shortest Path,SSSP问题)dijkstra算法求解的更多相关文章

  1. 单源最短距离 Single Source Shortest Path

    单源最短距离_示例程序_图模型_用户指南_MaxCompute-阿里云 https://help.aliyun.com/document_detail/27907.html 单源最短距离 更新时间:2 ...

  2. AOJ GRL_1_B: Shortest Path - Single Source Shortest Path (Negative Edges) (Bellman-Frod算法求负圈和单源最短路径)

    题目链接: http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_B   Single Source Shortest Path ...

  3. AOJ GRL_1_A: Single Source Shortest Path (Dijktra算法求单源最短路径,邻接表)

    题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_A Single Source Shortest Path In ...

  4. SPFA解决单源最短路径

    SPFA(Shortest Path Faster Algorithm): 一:基本算法 在求解单源最短路径的时候,最经典的是 Dijkstra 算法,但是这个算法对于含有负权的图就无能为力了,而 B ...

  5. 单源最短路径-迪杰斯特拉算法(Dijkstra's algorithm)

    Dijkstra's algorithm 迪杰斯特拉算法是目前已知的解决单源最短路径问题的最快算法. 单源(single source)最短路径,就是从一个源点出发,考察它到任意顶点所经过的边的权重之 ...

  6. 【算法导论】单源最短路径之Dijkstra算法

    Dijkstra算法解决了有向图上带正权值的单源最短路径问题,其运行时间要比Bellman-Ford算法低,但适用范围比Bellman-Ford算法窄. 迪杰斯特拉提出的按路径长度递增次序来产生源点到 ...

  7. Dijkstra 单源最短路径算法

    Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年 ...

  8. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)

    一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...

  9. Bellman-Ford 单源最短路径算法

    Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...

随机推荐

  1. android studio签名

    1.Build -> Generate Signed APK...,打开如下窗口 2.假设这里没有打过apk包,点击Create new,窗口如下 这里只要输入几个必要项 Key store p ...

  2. Linux进程实践(4) --wait避免僵尸进程

    Wait的背景 当子进程退出的时候,内核会向父进程发送SIGCHLD信号,子进程的退出是个异步事件(子进程可以在父进程运行的任何时刻终止) 子进程退出时,内核将子进程置为僵尸状态,这个进程称为僵尸进程 ...

  3. (九)UIScrollView和PageControl的分页

    涉及到内容的滚动与拖拽,使用UIScrllView. 对于滚动的多张图片,由于超出屏幕,应该使用代码添加代码. 添加的细节是:图片的宽高即为滚动视图的宽高,图片的y=0,x=图片的序号乘以图片的宽度. ...

  4. 【Python】Shell MD5使用的那些事

    MD5 应该是用的非常多的算法,就自己使用经验说说吧. 场景 算法层面不多说了,维基百科,还有很多文章都有说明. 主要用过的场景 密码存储,现在基本没怎么有使用的了,毕竟破解容易了很多 API校验,现 ...

  5. Java实现附近地点搜索

    Java,Mysql-根据一个给定经纬度的点,进行附近500米地点查询–合理利用算法 最近做一个项目:需要查询一个站点(已知该站点经纬度)1km-10km范围内的其它站点.所以,我首先想到的是,对每条 ...

  6. 【63】关系数据库常用的sql语句总结

    创建表 语法 CREATE TABLE <表名>(<列名> <数据类型>[列级完整性约束条件] [,<列名> <数据类型>[列级完整性约束条 ...

  7. Android中处理大图片时图片压缩

    1.BitmapFactory.Options中的属性 在进行图片压缩时,是通过设置BitmapFactory.Options的一些值来改变图片的属性的,下面我们来看看BitmapFactory.Op ...

  8. Leetcode_217_Contains Duplicate

    本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46271159 Given an array of inte ...

  9. WINCE之“系统事件”——System/Events

    1. 简介 Event--事件,相信有线程概念的编程人员都知道,它可以用来同步不同进程.不同线程的通信.在Windows CE 5.0系统中,有一种我称之为"系统事件"的Event ...

  10. Leetcode(59)-Count Primes

    题目: Description: Count the number of prime numbers less than a non-negative number, n. 思路: 题意:求小于给定非 ...