(四) Keras Dropout和正则化的使用
视频学习来源
https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553
笔记
使用dropout是要改善过拟合,将训练和测试的准确率差距变小
训练集,测试集结果相比差距较大时,过拟合状态
使用dropout后,每一周期准确率可能不高反而最后一步提升很快,这是训练的时候部分神经元工作,而最后的评估所有神经元工作
正则化同样是改善过拟合作用
Softmax一般用在神经网络的最后一层
import numpy as np
from keras.datasets import mnist #将会从网络下载mnist数据集
from keras.utils import np_utils
from keras.models import Sequential #序列模型
from keras.layers import Dense,Dropout #在这里导入dropout
from keras.optimizers import SGD
C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
Using TensorFlow backend.
#载入数据
(x_train,y_train),(x_test,y_test)=mnist.load_data()
#查看格式
#(60000,28,28)
print('x_shape:',x_train.shape)
#(60000)
print('y_shape:',y_train.shape)
#(60000,28,28)->(60000,784)
#行数60000,列-1表示自动设置
#除以255是做数据归一化处理
x_train=x_train.reshape(x_train.shape[0],-1)/255.0 #转换数据格式
x_test=x_test.reshape(x_test.shape[0],-1)/255.0 #转换数据格式
#label标签转换成 one hot 形式
y_train=np_utils.to_categorical(y_train,num_classes=10) #分成10类
y_test=np_utils.to_categorical(y_test,num_classes=10) #分成10类 #创建模型,输入754个神经元,输出10个神经元
#偏执值初始值设为zeros(默认为zeros)
model=Sequential([
Dense(units=200,input_dim=784,bias_initializer='zeros',activation='tanh'), #双曲正切激活函数
#Dropout(0.4), #百分之40的神经元不工作
Dense(units=100,bias_initializer='zeros',activation='tanh'), #双曲正切激活函数
#Dropout(0.4), #百分之40的神经元不工作
Dense(units=10,bias_initializer='zeros',activation='softmax')
]) #也可用下面的方式添加网络层
###
#model.add(Dense(...))
#model.add(Dense(...))
### #定义优化器
#学习速率为0.2
sgd=SGD(lr=0.2) #定义优化器,损失函数,训练效果中计算准确率
model.compile(
optimizer=sgd, #sgd优化器
loss='categorical_crossentropy', #损失用交叉熵,速度会更快
metrics=['accuracy'], #计算准确率
) #训练(不同于之前,这是新的训练方式)
#六万张,每次训练32张,训练10个周期(六万张全部训练完算一个周期)
model.fit(x_train,y_train,batch_size=32,epochs=10) #评估模型
loss,accuracy=model.evaluate(x_test,y_test) print('\ntest loss',loss)
print('\ntest accuracy',accuracy) loss,accuracy=model.evaluate(x_train,y_train) print('\ntrain loss',loss)
print('\ntrain accuracy',accuracy)
x_shape: (60000, 28, 28)
y_shape: (60000,)
Epoch 1/10
60000/60000 [==============================] - 6s 100us/step - loss: 0.2539 - acc: 0.9235
Epoch 2/10
60000/60000 [==============================] - 6s 95us/step - loss: 0.1175 - acc: 0.9639
Epoch 3/10
60000/60000 [==============================] - 5s 90us/step - loss: 0.0815 - acc: 0.9745
Epoch 4/10
60000/60000 [==============================] - 5s 90us/step - loss: 0.0601 - acc: 0.9809
Epoch 5/10
60000/60000 [==============================] - 6s 92us/step - loss: 0.0451 - acc: 0.9860
Epoch 6/10
60000/60000 [==============================] - 5s 91us/step - loss: 0.0336 - acc: 0.9899
Epoch 7/10
60000/60000 [==============================] - 5s 92us/step - loss: 0.0248 - acc: 0.9926
Epoch 8/10
60000/60000 [==============================] - 6s 93us/step - loss: 0.0185 - acc: 0.9948
Epoch 9/10
60000/60000 [==============================] - 6s 93us/step - loss: 0.0128 - acc: 0.9970
Epoch 10/10
60000/60000 [==============================] - 6s 93us/step - loss: 0.0082 - acc: 0.9988
10000/10000 [==============================] - 0s 39us/step
test loss 0.07058678171953651
test accuracy 0.9786
60000/60000 [==============================] - 2s 34us/step
train loss 0.0052643890143993
train accuracy 0.9995
使用后
(将#Dropout(0.4), 去掉注释)
model=Sequential([
Dense(units=200,input_dim=784,bias_initializer='zeros',activation='tanh'), #双曲正切激活函数
Dropout(0.4), #百分之40的神经元不工作
Dense(units=100,bias_initializer='zeros',activation='tanh'), #双曲正切激活函数
Dropout(0.4), #百分之40的神经元不工作
Dense(units=10,bias_initializer='zeros',activation='softmax') #双曲正切激活函数
])
x_shape: (60000, 28, 28)
y_shape: (60000,)
Epoch 1/10
60000/60000 [==============================] - 11s 184us/step - loss: 0.4158 - acc: 0.8753
Epoch 2/10
60000/60000 [==============================] - 10s 166us/step - loss: 0.2799 - acc: 0.9177
Epoch 3/10
60000/60000 [==============================] - 11s 177us/step - loss: 0.2377 - acc: 0.9302
Epoch 4/10
60000/60000 [==============================] - 10s 164us/step - loss: 0.2169 - acc: 0.9356
Epoch 5/10
60000/60000 [==============================] - 10s 170us/step - loss: 0.1979 - acc: 0.9413
Epoch 6/10
60000/60000 [==============================] - 11s 183us/step - loss: 0.1873 - acc: 0.9439
Epoch 7/10
60000/60000 [==============================] - 11s 180us/step - loss: 0.1771 - acc: 0.9472
Epoch 8/10
60000/60000 [==============================] - 12s 204us/step - loss: 0.1676 - acc: 0.9501
Epoch 9/10
60000/60000 [==============================] - 11s 187us/step - loss: 0.1608 - acc: 0.9527
Epoch 10/10
60000/60000 [==============================] - 10s 170us/step - loss: 0.1534 - acc: 0.9542
10000/10000 [==============================] - 1s 68us/step
test loss 0.09667835112037138
test accuracy 0.9692
60000/60000 [==============================] - 4s 70us/step
train loss 0.07203661710163578
train accuracy 0.9774666666666667
PS 本例并不能很好的体现dropout的优化,但是提供示例来使用dropout
正则化
Kernel_regularizer 权值正则化
Bias_regularizer 偏置正则化
Activity_regularizer 激活正则化
激活正则化是信号乘以权值加上偏置值得到的激活
一般设置权值较多
如果模型对于数据较为复杂,可用dropout和正则化来克服一些过拟合
如果模型对于数据较为简单,可用dropout和正则化可能会降低训练效果
import numpy as np
from keras.datasets import mnist #将会从网络下载mnist数据集
from keras.utils import np_utils
from keras.models import Sequential #序列模型
from keras.layers import Dense
from keras.optimizers import SGD
from keras.regularizers import l2 #导入正则化l2(小写L)
#载入数据
(x_train,y_train),(x_test,y_test)=mnist.load_data()
#查看格式
#(60000,28,28)
print('x_shape:',x_train.shape)
#(60000)
print('y_shape:',y_train.shape)
#(60000,28,28)->(60000,784)
#行数60000,列-1表示自动设置
#除以255是做数据归一化处理
x_train=x_train.reshape(x_train.shape[0],-1)/255.0 #转换数据格式
x_test=x_test.reshape(x_test.shape[0],-1)/255.0 #转换数据格式
#label标签转换成 one hot 形式
y_train=np_utils.to_categorical(y_train,num_classes=10) #分成10类
y_test=np_utils.to_categorical(y_test,num_classes=10) #分成10类 #创建模型,输入754个神经元,输出10个神经元
#偏执值初始值设为zeros(默认为zeros)
model=Sequential([
#加上权值正则化
Dense(units=200,input_dim=784,bias_initializer='zeros',activation='tanh',kernel_regularizer=l2(0.0003)), #双曲正切激活函数
Dense(units=100,bias_initializer='zeros',activation='tanh',kernel_regularizer=l2(0.0003)), #双曲正切激活函数
Dense(units=10,bias_initializer='zeros',activation='softmax',kernel_regularizer=l2(0.0003))
]) #也可用下面的方式添加网络层
###
#model.add(Dense(...))
#model.add(Dense(...))
### #定义优化器
#学习速率为0.2
sgd=SGD(lr=0.2) #定义优化器,损失函数,训练效果中计算准确率
model.compile(
optimizer=sgd, #sgd优化器
loss='categorical_crossentropy', #损失用交叉熵,速度会更快
metrics=['accuracy'], #计算准确率
) #训练(不同于之前,这是新的训练方式)
#六万张,每次训练32张,训练10个周期(六万张全部训练完算一个周期)
model.fit(x_train,y_train,batch_size=32,epochs=10) #评估模型
loss,accuracy=model.evaluate(x_test,y_test) print('\ntest loss',loss)
print('\ntest accuracy',accuracy) loss,accuracy=model.evaluate(x_train,y_train) print('\ntrain loss',loss)
print('\ntrain accuracy',accuracy)
x_shape: (60000, 28, 28)
y_shape: (60000,)
Epoch 1/10
60000/60000 [==============================] - 8s 127us/step - loss: 0.4064 - acc: 0.9202
Epoch 2/10
60000/60000 [==============================] - 7s 121us/step - loss: 0.2616 - acc: 0.9603
Epoch 3/10
60000/60000 [==============================] - 8s 135us/step - loss: 0.2185 - acc: 0.9683
Epoch 4/10
60000/60000 [==============================] - 8s 132us/step - loss: 0.1950 - acc: 0.9723
Epoch 5/10
60000/60000 [==============================] - 8s 130us/step - loss: 0.1793 - acc: 0.9754
Epoch 6/10
60000/60000 [==============================] - 8s 125us/step - loss: 0.1681 - acc: 0.9775
Epoch 7/10
60000/60000 [==============================] - 8s 130us/step - loss: 0.1625 - acc: 0.9783
Epoch 8/10
60000/60000 [==============================] - 7s 125us/step - loss: 0.1566 - acc: 0.9797
Epoch 9/10
60000/60000 [==============================] - 8s 136us/step - loss: 0.1515 - acc: 0.9811
Epoch 10/10
60000/60000 [==============================] - 8s 140us/step - loss: 0.1515 - acc: 0.9808
10000/10000 [==============================] - 1s 57us/step test loss 0.17750378291606903 test accuracy 0.9721
60000/60000 [==============================] - 3s 52us/step train loss 0.1493431808312734 train accuracy 0.9822666666666666
(四) Keras Dropout和正则化的使用的更多相关文章
- TensorFlow——dropout和正则化的相关方法
1.dropout dropout是一种常用的手段,用来防止过拟合的,dropout的意思是在训练过程中每次都随机选择一部分节点不要去学习,减少神经元的数量来降低模型的复杂度,同时增加模型的泛化能力. ...
- TensorFlow keras dropout层
# 建立神经网络模型 model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), # 将输入数据的形状进行修改成神经网 ...
- Deep learning:四十一(Dropout简单理解)
前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural n ...
- TensorFlow之DNN(三):神经网络的正则化方法(Dropout、L2正则化、早停和数据增强)
这一篇博客整理用TensorFlow实现神经网络正则化的内容. 深层神经网络往往具有数十万乃至数百万的参数,可以进行非常复杂的特征变换,具有强大的学习能力,因此容易在训练集上过拟合.缓解神经网络的过拟 ...
- 模型正则化,dropout
正则化 在模型中加入正则项,防止训练过拟合,使测试集效果提升 Dropout 每次在网络中正向传播时,在每一层随机将一些神经元置零(相当于激活函数置零),一般在全连接层使用,在卷积层一般随机将整个通道 ...
- 深度学习中Dropout原理解析
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题 ...
- Dropout原理解析
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象.在训练神经网络的时候经常会遇到过拟合的问题, ...
- 深度学习基础系列(九)| Dropout VS Batch Normalization? 是时候放弃Dropout了
Dropout是过去几年非常流行的正则化技术,可有效防止过拟合的发生.但从深度学习的发展趋势看,Batch Normalizaton(简称BN)正在逐步取代Dropout技术,特别是在卷积层.本文将首 ...
- Hebye 深度学习中Dropout原理解析
1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题 ...
随机推荐
- ASP.NET Core开发者成长路线图
目录 ASP.NET Core开发者路线图RoadMap 免责声明 请给一个星星! ⭐ 路线图 资源 总结 贡献 许可协议 ASP.NET Core开发者路线图RoadMap 来源: MoienTaj ...
- [区块链] 共识算法之争(PBFT,Raft,PoW,PoS,DPoS,Ripple)
近几天对区块链中几种常见的共识机制(PBFT,Raft,PoW,PoS,DPoS,Ripple)进行了总结.尽量使用简单易懂语言,篇幅较大,想了解的可以只读每个算法介绍中前边的原理.本篇文章主要参考& ...
- [区块链] 密码学——椭圆曲线密码算法(ECC)
今天在学椭圆曲线密码(Elliptic Curve Cryptography,ECC)算法,自己手里缺少介绍该算法的专业书籍,故在网上查了很多博文与书籍,但是大多数博客写的真的是...你懂的...真不 ...
- java到底是引用传递还是值传递?
今天我们来讲讲一个在学习中容易误解的问题,面试中也偶尔问到,java方法调用时到底是值传递还是引用传递? 首先,请大家来做一个判断题,下面的3个问题是否描述正确 1. java基本数据类型传递是值传递 ...
- java之servlet入门操作教程一续
本节主要是在java之servlet入门操作教程一 的基础上使用myeclipse实现自动部署的功能 准备: java之servlet入门操作教程一 中完成myFirstServlet项目的创建: ...
- java程序调用CMD命令启动tomcat替换环境变量
出现问题: 此时不应有 Files\Java\jdk1.8.0_92\bin\java.exe""(本地未出现问题,服务器环境出现) 出现原因: 1:环境变量JAVA_HOME配置 ...
- ArcGIS注册数据库问题分析
本文是'猴妹'师妹授权给我来发表的,介绍都是师妹的研究成果,在此,非常感谢'猴妹'师妹. 用ArcGIS Server在发布地图服务时,注册数据库是很常见的,几年前就开始注册数据库,直到昨天,才有点顿 ...
- sqlserver的over开窗函数(与排名函数或聚合函数一起使用)
首先初始化表和数据 create table t_student( Id INT, Name varchar(), Score int, ClassId INT ); insert i ...
- python进程、进程池(二)代码部分
第一种创建进程的方式: from multiprocessing import Process def f(name): print(name,"在子进程") if __name_ ...
- 4.29 初始mysql