视频学习来源

https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553

笔记

使用dropout是要改善过拟合,将训练和测试的准确率差距变小

训练集,测试集结果相比差距较大时,过拟合状态

使用dropout后,每一周期准确率可能不高反而最后一步提升很快,这是训练的时候部分神经元工作,而最后的评估所有神经元工作

正则化同样是改善过拟合作用

Softmax一般用在神经网络的最后一层

import numpy as np
from keras.datasets import mnist #将会从网络下载mnist数据集
from keras.utils import np_utils
from keras.models import Sequential #序列模型
from keras.layers import Dense,Dropout #在这里导入dropout
from keras.optimizers import SGD
C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
Using TensorFlow backend.

#载入数据
(x_train,y_train),(x_test,y_test)=mnist.load_data()
#查看格式
#(60000,28,28)
print('x_shape:',x_train.shape)
#(60000)
print('y_shape:',y_train.shape)
#(60000,28,28)->(60000,784)
#行数60000,列-1表示自动设置
#除以255是做数据归一化处理
x_train=x_train.reshape(x_train.shape[0],-1)/255.0 #转换数据格式
x_test=x_test.reshape(x_test.shape[0],-1)/255.0 #转换数据格式
#label标签转换成 one hot 形式
y_train=np_utils.to_categorical(y_train,num_classes=10) #分成10类
y_test=np_utils.to_categorical(y_test,num_classes=10) #分成10类 #创建模型,输入754个神经元,输出10个神经元
#偏执值初始值设为zeros(默认为zeros)
model=Sequential([
Dense(units=200,input_dim=784,bias_initializer='zeros',activation='tanh'), #双曲正切激活函数
#Dropout(0.4), #百分之40的神经元不工作
Dense(units=100,bias_initializer='zeros',activation='tanh'), #双曲正切激活函数
#Dropout(0.4), #百分之40的神经元不工作
Dense(units=10,bias_initializer='zeros',activation='softmax')
]) #也可用下面的方式添加网络层
###
#model.add(Dense(...))
#model.add(Dense(...))
### #定义优化器
#学习速率为0.2
sgd=SGD(lr=0.2) #定义优化器,损失函数,训练效果中计算准确率
model.compile(
optimizer=sgd, #sgd优化器
loss='categorical_crossentropy', #损失用交叉熵,速度会更快
metrics=['accuracy'], #计算准确率
) #训练(不同于之前,这是新的训练方式)
#六万张,每次训练32张,训练10个周期(六万张全部训练完算一个周期)
model.fit(x_train,y_train,batch_size=32,epochs=10) #评估模型
loss,accuracy=model.evaluate(x_test,y_test) print('\ntest loss',loss)
print('\ntest accuracy',accuracy) loss,accuracy=model.evaluate(x_train,y_train) print('\ntrain loss',loss)
print('\ntrain accuracy',accuracy)
x_shape: (60000, 28, 28)
y_shape: (60000,)
Epoch 1/10
60000/60000 [==============================] - 6s 100us/step - loss: 0.2539 - acc: 0.9235
Epoch 2/10
60000/60000 [==============================] - 6s 95us/step - loss: 0.1175 - acc: 0.9639
Epoch 3/10
60000/60000 [==============================] - 5s 90us/step - loss: 0.0815 - acc: 0.9745
Epoch 4/10
60000/60000 [==============================] - 5s 90us/step - loss: 0.0601 - acc: 0.9809
Epoch 5/10
60000/60000 [==============================] - 6s 92us/step - loss: 0.0451 - acc: 0.9860
Epoch 6/10
60000/60000 [==============================] - 5s 91us/step - loss: 0.0336 - acc: 0.9899
Epoch 7/10
60000/60000 [==============================] - 5s 92us/step - loss: 0.0248 - acc: 0.9926
Epoch 8/10
60000/60000 [==============================] - 6s 93us/step - loss: 0.0185 - acc: 0.9948
Epoch 9/10
60000/60000 [==============================] - 6s 93us/step - loss: 0.0128 - acc: 0.9970
Epoch 10/10
60000/60000 [==============================] - 6s 93us/step - loss: 0.0082 - acc: 0.9988
10000/10000 [==============================] - 0s 39us/step
 
test loss 0.07058678171953651
 
test accuracy 0.9786
60000/60000 [==============================] - 2s 34us/step
 
train loss 0.0052643890143993
 
train accuracy 0.9995


使用后
(将#Dropout(0.4), 去掉注释)

model=Sequential([
Dense(units=200,input_dim=784,bias_initializer='zeros',activation='tanh'), #双曲正切激活函数
Dropout(0.4), #百分之40的神经元不工作
Dense(units=100,bias_initializer='zeros',activation='tanh'), #双曲正切激活函数
Dropout(0.4), #百分之40的神经元不工作
Dense(units=10,bias_initializer='zeros',activation='softmax') #双曲正切激活函数
])

x_shape: (60000, 28, 28)
y_shape: (60000,)
Epoch 1/10
60000/60000 [==============================] - 11s 184us/step - loss: 0.4158 - acc: 0.8753
Epoch 2/10
60000/60000 [==============================] - 10s 166us/step - loss: 0.2799 - acc: 0.9177
Epoch 3/10
60000/60000 [==============================] - 11s 177us/step - loss: 0.2377 - acc: 0.9302
Epoch 4/10
60000/60000 [==============================] - 10s 164us/step - loss: 0.2169 - acc: 0.9356
Epoch 5/10
60000/60000 [==============================] - 10s 170us/step - loss: 0.1979 - acc: 0.9413
Epoch 6/10
60000/60000 [==============================] - 11s 183us/step - loss: 0.1873 - acc: 0.9439
Epoch 7/10
60000/60000 [==============================] - 11s 180us/step - loss: 0.1771 - acc: 0.9472
Epoch 8/10
60000/60000 [==============================] - 12s 204us/step - loss: 0.1676 - acc: 0.9501
Epoch 9/10
60000/60000 [==============================] - 11s 187us/step - loss: 0.1608 - acc: 0.9527
Epoch 10/10
60000/60000 [==============================] - 10s 170us/step - loss: 0.1534 - acc: 0.9542
10000/10000 [==============================] - 1s 68us/step
 
test loss 0.09667835112037138
 
test accuracy 0.9692
60000/60000 [==============================] - 4s 70us/step
 
train loss 0.07203661710163578
 
train accuracy 0.9774666666666667


PS 本例并不能很好的体现dropout的优化,但是提供示例来使用dropout

正则化

Kernel_regularizer 权值正则化

Bias_regularizer 偏置正则化

Activity_regularizer 激活正则化

激活正则化是信号乘以权值加上偏置值得到的激活

一般设置权值较多

如果模型对于数据较为复杂,可用dropout和正则化来克服一些过拟合

如果模型对于数据较为简单,可用dropout和正则化可能会降低训练效果

import numpy as np
from keras.datasets import mnist #将会从网络下载mnist数据集
from keras.utils import np_utils
from keras.models import Sequential #序列模型
from keras.layers import Dense
from keras.optimizers import SGD
from keras.regularizers import l2 #导入正则化l2(小写L)
#载入数据
(x_train,y_train),(x_test,y_test)=mnist.load_data()
#查看格式
#(60000,28,28)
print('x_shape:',x_train.shape)
#(60000)
print('y_shape:',y_train.shape)
#(60000,28,28)->(60000,784)
#行数60000,列-1表示自动设置
#除以255是做数据归一化处理
x_train=x_train.reshape(x_train.shape[0],-1)/255.0 #转换数据格式
x_test=x_test.reshape(x_test.shape[0],-1)/255.0 #转换数据格式
#label标签转换成 one hot 形式
y_train=np_utils.to_categorical(y_train,num_classes=10) #分成10类
y_test=np_utils.to_categorical(y_test,num_classes=10) #分成10类 #创建模型,输入754个神经元,输出10个神经元
#偏执值初始值设为zeros(默认为zeros)
model=Sequential([
#加上权值正则化
Dense(units=200,input_dim=784,bias_initializer='zeros',activation='tanh',kernel_regularizer=l2(0.0003)), #双曲正切激活函数
Dense(units=100,bias_initializer='zeros',activation='tanh',kernel_regularizer=l2(0.0003)), #双曲正切激活函数
Dense(units=10,bias_initializer='zeros',activation='softmax',kernel_regularizer=l2(0.0003))
]) #也可用下面的方式添加网络层
###
#model.add(Dense(...))
#model.add(Dense(...))
### #定义优化器
#学习速率为0.2
sgd=SGD(lr=0.2) #定义优化器,损失函数,训练效果中计算准确率
model.compile(
optimizer=sgd, #sgd优化器
loss='categorical_crossentropy', #损失用交叉熵,速度会更快
metrics=['accuracy'], #计算准确率
) #训练(不同于之前,这是新的训练方式)
#六万张,每次训练32张,训练10个周期(六万张全部训练完算一个周期)
model.fit(x_train,y_train,batch_size=32,epochs=10) #评估模型
loss,accuracy=model.evaluate(x_test,y_test) print('\ntest loss',loss)
print('\ntest accuracy',accuracy) loss,accuracy=model.evaluate(x_train,y_train) print('\ntrain loss',loss)
print('\ntrain accuracy',accuracy)
x_shape: (60000, 28, 28)
y_shape: (60000,)
Epoch 1/10
60000/60000 [==============================] - 8s 127us/step - loss: 0.4064 - acc: 0.9202
Epoch 2/10
60000/60000 [==============================] - 7s 121us/step - loss: 0.2616 - acc: 0.9603
Epoch 3/10
60000/60000 [==============================] - 8s 135us/step - loss: 0.2185 - acc: 0.9683
Epoch 4/10
60000/60000 [==============================] - 8s 132us/step - loss: 0.1950 - acc: 0.9723
Epoch 5/10
60000/60000 [==============================] - 8s 130us/step - loss: 0.1793 - acc: 0.9754
Epoch 6/10
60000/60000 [==============================] - 8s 125us/step - loss: 0.1681 - acc: 0.9775
Epoch 7/10
60000/60000 [==============================] - 8s 130us/step - loss: 0.1625 - acc: 0.9783
Epoch 8/10
60000/60000 [==============================] - 7s 125us/step - loss: 0.1566 - acc: 0.9797
Epoch 9/10
60000/60000 [==============================] - 8s 136us/step - loss: 0.1515 - acc: 0.9811
Epoch 10/10
60000/60000 [==============================] - 8s 140us/step - loss: 0.1515 - acc: 0.9808
10000/10000 [==============================] - 1s 57us/step test loss 0.17750378291606903 test accuracy 0.9721
60000/60000 [==============================] - 3s 52us/step train loss 0.1493431808312734 train accuracy 0.9822666666666666
												

(四) Keras Dropout和正则化的使用的更多相关文章

  1. TensorFlow——dropout和正则化的相关方法

    1.dropout dropout是一种常用的手段,用来防止过拟合的,dropout的意思是在训练过程中每次都随机选择一部分节点不要去学习,减少神经元的数量来降低模型的复杂度,同时增加模型的泛化能力. ...

  2. TensorFlow keras dropout层

    # 建立神经网络模型 model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), # 将输入数据的形状进行修改成神经网 ...

  3. Deep learning:四十一(Dropout简单理解)

    前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural n ...

  4. TensorFlow之DNN(三):神经网络的正则化方法(Dropout、L2正则化、早停和数据增强)

    这一篇博客整理用TensorFlow实现神经网络正则化的内容. 深层神经网络往往具有数十万乃至数百万的参数,可以进行非常复杂的特征变换,具有强大的学习能力,因此容易在训练集上过拟合.缓解神经网络的过拟 ...

  5. 模型正则化,dropout

    正则化 在模型中加入正则项,防止训练过拟合,使测试集效果提升 Dropout 每次在网络中正向传播时,在每一层随机将一些神经元置零(相当于激活函数置零),一般在全连接层使用,在卷积层一般随机将整个通道 ...

  6. 深度学习中Dropout原理解析

    1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题 ...

  7. Dropout原理解析

    1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象.在训练神经网络的时候经常会遇到过拟合的问题, ...

  8. 深度学习基础系列(九)| Dropout VS Batch Normalization? 是时候放弃Dropout了

    Dropout是过去几年非常流行的正则化技术,可有效防止过拟合的发生.但从深度学习的发展趋势看,Batch Normalizaton(简称BN)正在逐步取代Dropout技术,特别是在卷积层.本文将首 ...

  9. Hebye 深度学习中Dropout原理解析

    1. Dropout简介 1.1 Dropout出现的原因 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象. 在训练神经网络的时候经常会遇到过拟合的问题 ...

随机推荐

  1. 一大波开发者福利来了,一份微软官方Github上发布的开源项目清单等你签收

    目录 微软Github开源项目入口 微软开源项目受欢迎程度排名 Visual Studio Code TypeScript RxJS .NET Core 基础类库 CNTK Microsoft cal ...

  2. Android进程间通信(一):AIDL使用详解

    一.概述 AIDL是Android Interface Definition Language的缩写,即Android接口定义语言.它是Android的进程间通信比较常用的一种方式. Android中 ...

  3. LVS的DR模型配置

    LVS的DR模型配置 介绍 下图为DR模型的通信过程,图中的IP不要被扑结构中的IP迷惑,图里只是为了说明DR的通信原理,应用到本例中的拓扑上其工作原理不变. 拓扑结构 服务器 IP地址 角色 Srv ...

  4. 《k8s-1.13版本源码分析》-调度器框架

    本文原始地址(gitbook格式):https://farmer-hutao.github.io/k8s-source-code-analysis/core/scheduler/scheduler-f ...

  5. JavaScript对象类型判断注意点

    注意点 不要使用 new Number() . new Boolean() . new String() 创建包装对象:用 parseInt() 或 parseFloat() 来转换任意类型到numb ...

  6. Sharepoint 2013内容查询Web部件自定义显示样式(实战)

    分享人:广州华软 星尘 一. 前言 在进行Sharepoint开发时,经常会遇到内容展示个性化需求的问题,当然如果通过自定义开发控件对于内容展示的需求基本都可以很好的解决,但自定义开发也有不好的地方, ...

  7. T-SQL语法基础

    一.T-SQL语言的分类 DDL-数据定义语言 create-创建 alter-修改 drop-删除(针对对象) DML-数据操作语言 Insert-插入 update-更新 delete-删除(针对 ...

  8. Fiddler-弱网测试设置

    第一步:打开模拟弱网环境 第二步:打开配置文件 第三步:修改配置参数  m_SimulateModem,修改后最好 Ctrl+S 保存一下 第四步:修改好参数返回后需要再次打开弱网环境 以上弱网设置就 ...

  9. 【安富莱STM32H7教程】第1章 初学STM32H7的准备工作

    完整教程下载地址:http://forum.armfly.com/forum.php?mod=viewthread&tid=86980 第1章   初学STM32H7的准备工作 俗话说万事开头 ...

  10. Hadoop系列008-HDFS的数据流

    本人微信公众号,欢迎扫码关注! HDFS的数据流 1 HDFS写数据流程 1.1 剖析文件写入 1)客户端向namenode请求上传文件,namenode检查目标文件是否已存在,父目录是否存在. 2) ...