Vfk的集合幂级数论文的例题….随机集合并为全集的期望集合数….这篇题解里的东西基本来自vfk的论文.

首先根据期望的线性性,我们把需要走第1步的概率(一定为1)加上需要走第2步的概率(等于走了第一步之后没有得到全集的概率)加上需要走第3步的概率(等于走了两步之后没有得到全集的概率)….一直加到需要走正无穷步的概率就是期望的步数.那么走了x步之后没有得到全集的概率等于走了x步之后得到不是全集的集合的概率之和.那么我们用集合并卷积定义乘法,把给出的概率视作集合幂级数,求集合幂级数的等比数列之和,把除了全集一项的其他项的值加起来就是答案.

集合幂级数的莫比乌斯变换和莫比乌斯反演:从f[]数组求得F[]数组,使得F[x]=sigma{f[j],j&x==j},F[]称作f[]的莫比乌斯变换,f[]称作F[]的莫比乌斯反演.

集合幂级数的等比数列之和不容易直接求,但集合幂级数的莫比乌斯变换的等比数列之和易求,而且集合幂级数的莫比乌斯变换的等比数列之和就是集合幂级数的等比数列之和的莫比乌斯变换,我们莫比乌斯反演回来就得到了集合幂级数的等比数列之和.

那么我们只要能快速求解集合幂级数的莫比乌斯反演和莫比乌斯变换,问题就解决了.

Vfk论文里的快速莫比乌斯变换(FMT):

for(i=;i<n;++i)
for(j=;j<(<<n);++j)
if(j&(<<i))f[j]+=f[j^(<<i)];

快速莫比乌斯反演:

for(i=;i<n;++i)
for(j=;j<(<<n);++j){
if(j&(<<i))f[j]-=f[j^(<<i)];

两个过程基本相同,快速反演相当于把快速变换的过程倒了过来.

我们直接在f数组上运算,算法结束后f数组中保存原数组的莫比乌斯变换或莫比乌斯反演.

莫比乌斯变换其实相当于n维前缀和,莫比乌斯反演其实相当于n维差分.也可以用DP来理解。集合并卷积还算是集合幂级数中比较良心易懂的东西.

智商着急现场:http://liu-runda.blog.uoj.ac/blog/2360

bzoj4036[HAOI2015]set 按位或的更多相关文章

  1. 「HAOI2015」按位或

    「HAOI2015」按位或 解题思路 : 这类期望题一眼 \(\text{Min-Max}\) 容斥,只需要稍微推一下如何求 \(E(minS)\) 即可. \[ E(minS) = \frac{1} ...

  2. BZOJ4036 [HAOI2015]按位或 FWT

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机 ...

  3. BZOJ4036 HAOI2015按位或(概率期望+容斥原理)

    考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间.求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]. 考虑怎么求P[S].P[S]=∑p[s] (s&S& ...

  4. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  5. [BZOJ4036] [HAOI2015]按位或

    传送门:https://lydsy.com/JudgeOnline/problem.php?id=4036 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数 ...

  6. bzoj4036 [HAOI2015]按位或 状压DP + MinMax 容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4036 题解 变成 \(2^n-1\) 的意思显然就是每一个数位都出现了. 那么通过 MinMa ...

  7. LOJ#2127「HAOI2015」按位或

    用$ Min-Max$容斥之后要推的东西少了好多 无耻的用实数快读抢了BZOJ.Luogu.LOJ三个$ OJ$的Rank 1 即将update:被STO TXC OTZ超了QAQ 题意:集合$ [0 ...

  8. 【LOJ】#2127. 「HAOI2015」按位或

    题解 听说这是一道论文题orz \(\sum_{k = 1}^{\infty} k(p^{k} - p^{k - 1})\) 答案是这个多项式的第\(2^N - 1\)项的系数 我们反演一下,卷积变点 ...

  9. 【LOJ2127】「HAOI2015」按位或

    题意 刚开始你有一个数字 \(0\),每一秒钟你会随机选择一个 \([0,2^n-1]\) 的数字,与你手上的数字进行或操作.选择数字 \(i\) 的概率是 \(p[i]\) . 问期望多少秒后,你手 ...

随机推荐

  1. CLOUD流程设置

    流程-反写规则 允许超额

  2. js中的call、apply、bind

    在js中每个函数都包含两个非继承而来的方法:call()和apply() call和apply的作用都是在特定的作用域中将函数绑定到另外一个对象上去运行,即可以用来重新定义函数的执行环境,两者仅在定义 ...

  3. 转《vue引入第三方js库》

    一.绝对路径直接引入,全局可用 二.绝对路径直接引入,配置后,import 引入后再使用 三.webpack中配置 alias,import 引入后再使用 四.webpack 中配置 plugins, ...

  4. RabbitMQ基本操作

    更加详细的 链接https://www.cnblogs.com/dwlsxj/p/RabbitMQ.html RabbitMQ基础知识 一.背景 RabbitMQ是一个由erlang开发的AMQP(A ...

  5. Python魔法方法(magic method)细解几个常用魔法方法(上)

    这里只分析几个可能会常用到的魔法方法,像__new__这种不常用的,用来做元类初始化的或者是__init__这种初始化使用的 每个人都会用的就不介绍了. 其实每个魔法方法都是在对内建方法的重写,和做像 ...

  6. linux audit审计(7)--读懂audit日志

    让我们先来构造一条audit日志.在home目录下新建一个目录,然后配置一条audit规则,对这个目录的wrax,都记录审计日志: auditctl -w /home/audit_test -p wr ...

  7. python django 的环境搭建(centos)

    一.安装好nginx 二.安装uwsgi yum install python-devel -y pip3 install uwsgi #测试启动django /usr/local/python3/b ...

  8. 莫烦theano学习自修第五天【定义神经层】

    1. 代码如下: #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ import numpy as np import theano.tensor as T ...

  9. python设计模式第二十四天【命令模式】

    1.使用场景 (1)调用过程比较繁琐,需要封装 (2)调用参数需要进行处理封装 (3)需要添加额外的功能,例如,日志,缓存,操作记录等 2.代码实现 #!/usr/bin/env python #! ...

  10. Ajax之Jquery封装使用举例2(Json和JsonArray处理)

    本例主要使用ajax进行异步数据请求,并针对返回数据为json和jsonarray类型的数据处理. 本例中只有前端的代码,后端代码不是本文重点,故省略. 后端接口返回数据为: Json: {" ...