bzoj4036[HAOI2015]set 按位或
Vfk的集合幂级数论文的例题….随机集合并为全集的期望集合数….这篇题解里的东西基本来自vfk的论文.
首先根据期望的线性性,我们把需要走第1步的概率(一定为1)加上需要走第2步的概率(等于走了第一步之后没有得到全集的概率)加上需要走第3步的概率(等于走了两步之后没有得到全集的概率)….一直加到需要走正无穷步的概率就是期望的步数.那么走了x步之后没有得到全集的概率等于走了x步之后得到不是全集的集合的概率之和.那么我们用集合并卷积定义乘法,把给出的概率视作集合幂级数,求集合幂级数的等比数列之和,把除了全集一项的其他项的值加起来就是答案.
集合幂级数的莫比乌斯变换和莫比乌斯反演:从f[]数组求得F[]数组,使得F[x]=sigma{f[j],j&x==j},F[]称作f[]的莫比乌斯变换,f[]称作F[]的莫比乌斯反演.
集合幂级数的等比数列之和不容易直接求,但集合幂级数的莫比乌斯变换的等比数列之和易求,而且集合幂级数的莫比乌斯变换的等比数列之和就是集合幂级数的等比数列之和的莫比乌斯变换,我们莫比乌斯反演回来就得到了集合幂级数的等比数列之和.
那么我们只要能快速求解集合幂级数的莫比乌斯反演和莫比乌斯变换,问题就解决了.
Vfk论文里的快速莫比乌斯变换(FMT):
for(i=;i<n;++i)
for(j=;j<(<<n);++j)
if(j&(<<i))f[j]+=f[j^(<<i)];
快速莫比乌斯反演:
for(i=;i<n;++i)
for(j=;j<(<<n);++j){
if(j&(<<i))f[j]-=f[j^(<<i)];
两个过程基本相同,快速反演相当于把快速变换的过程倒了过来.
我们直接在f数组上运算,算法结束后f数组中保存原数组的莫比乌斯变换或莫比乌斯反演.
莫比乌斯变换其实相当于n维前缀和,莫比乌斯反演其实相当于n维差分.也可以用DP来理解。集合并卷积还算是集合幂级数中比较良心易懂的东西.
智商着急现场:http://liu-runda.blog.uoj.ac/blog/2360
bzoj4036[HAOI2015]set 按位或的更多相关文章
- 「HAOI2015」按位或
「HAOI2015」按位或 解题思路 : 这类期望题一眼 \(\text{Min-Max}\) 容斥,只需要稍微推一下如何求 \(E(minS)\) 即可. \[ E(minS) = \frac{1} ...
- BZOJ4036 [HAOI2015]按位或 FWT
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机 ...
- BZOJ4036 HAOI2015按位或(概率期望+容斥原理)
考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间.求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]. 考虑怎么求P[S].P[S]=∑p[s] (s&S& ...
- BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】
题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...
- [BZOJ4036] [HAOI2015]按位或
传送门:https://lydsy.com/JudgeOnline/problem.php?id=4036 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数 ...
- bzoj4036 [HAOI2015]按位或 状压DP + MinMax 容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4036 题解 变成 \(2^n-1\) 的意思显然就是每一个数位都出现了. 那么通过 MinMa ...
- LOJ#2127「HAOI2015」按位或
用$ Min-Max$容斥之后要推的东西少了好多 无耻的用实数快读抢了BZOJ.Luogu.LOJ三个$ OJ$的Rank 1 即将update:被STO TXC OTZ超了QAQ 题意:集合$ [0 ...
- 【LOJ】#2127. 「HAOI2015」按位或
题解 听说这是一道论文题orz \(\sum_{k = 1}^{\infty} k(p^{k} - p^{k - 1})\) 答案是这个多项式的第\(2^N - 1\)项的系数 我们反演一下,卷积变点 ...
- 【LOJ2127】「HAOI2015」按位或
题意 刚开始你有一个数字 \(0\),每一秒钟你会随机选择一个 \([0,2^n-1]\) 的数字,与你手上的数字进行或操作.选择数字 \(i\) 的概率是 \(p[i]\) . 问期望多少秒后,你手 ...
随机推荐
- Oracle 中sql文件的导入导出
导出 一般导入的时候我用的是命令行 imp c##zs/@orcl fromuser=c##zs touser=c##zs file=D:\java\.dmp ignore=y c##zs 是创建的用 ...
- java 中Excel的导入导出
部分转发原作者https://www.cnblogs.com/qdhxhz/p/8137282.html雨点的名字 的内容 java代码中的导入导出 首先在d盘创建一个xlsx文件,然后再进行一系列 ...
- PHP5.4.0新特性研究
PHP5.4.0新特性研究 1.内建Web Server 这的确是个好的改进,大大的方便了开发人员.以后开发机不装nginx,httpd也行 cd $PHP_INSTALL_PATH ./bin/ph ...
- Linux基础学习笔记4-文本处理
本章内容 抽取文本的工具 文件内容:less和cat 文件截取:head和tail 按列抽取:cut 按关键字抽取:grep 文件查看 文件查看命令:cat,tac,rev cat [OPTION] ...
- 每日一小时linux(1)--sysRq
参考https://www.ibm.com/developerworks/cn/linux/l-cn-sysrq/index.html SysRq 是什么 你是否遇到服务器不能通过 SSH 登录,也不 ...
- java.util.concurrent.TimeoutException: Idle timeout expired: 300000/300000 ms
Request idle timed out at 123000 ms. That means there was no activity (read or write) for 123000 ms ...
- Windows Server 2012 IIS 8 - 安装SSL证书
从证书邮件里或者用户中心复制对应的SSL证书文件代码 把代码粘贴到TXT文本文件里面 然后另存为cer或是crt文件,注意编码为ANSI 中级证书和交叉证书也是按以上方法保存为crt或cer文件即可 ...
- SQL Server 一张图让你秒懂联合表查询
- Django框架中的Context使用
Django框架中的Context使用 2017年11月09日 20:01:09 aweilark 阅读数:1113 转载自:http://www.aichengxu.com/python/606 ...
- RESTful 架构详解
RESTful 架构详解 分类 编程技术 1. 什么是REST REST全称是Representational State Transfer,中文意思是表述(编者注:通常译为表征)性状态转移. 它首次 ...