O(n*logn)级别的算法之一(归并排序及其优化)
原理:
设两个有序的子序列(相当于输入序列)放在同一序列中相邻的位置上:array[low..m],array[m + 1..high],先将它们合并到一个局部的暂存序列 temp (相当于输出序列)中,待合并完成后将 temp 复制回 array[low..high]中,从而完成排序。
在具体的合并过程中,设置 i,j 和 p 三个指针,其初值分别指向这三个记录区的起始位置。合并时依次比较 array[i] 和 array[j] 的关键字,取关键字较小(或较大)的记录复制到 temp[p] 中,然后将被复制记录的指针 i 或 j 加 1,以及指向复制位置的指针 p加 1。重复这一过程直至两个输入的子序列有一个已全部复制完毕(不妨称其为空),此时将另一非空的子序列中剩余记录依次复制到 array 中即可
备注:图片原理来源:https://blog.csdn.net/yinjiabin/article/details/8265827/
待排序列(14,12,15,13,11,16)
假设我们有一个没有排好序的序列,那么首先我们使用分割的办法将这个序列分割成一个个已经排好序的子序列。然后再利用归并的方法将一个个的子序列合并成排序好的序列。分割和归并的过程可以看下面的图例。

先"分割"再"合并"
从上图可以看出,我们首先把一个未排序的序列从中间分割成2部分,再把2部分分成4部分,依次分割下去,直到分割成一个一个的数据,再把这些数据两两归并到一起,使之有序,不停的归并,最后成为一个排好序的序列。

测试用例:
#ifndef INC_02_MERGE_SORT_SORTTESTHELPER_H
#define INC_02_MERGE_SORT_SORTTESTHELPER_H
#include <iostream>
#include <algorithm>
#include <string>
#include <ctime>
#include <cassert>
using namespace std;
namespace SortTestHelper {
// 生成有n个元素的随机数组,每个元素的随机范围为[rangeL, rangeR]
int *generateRandomArray(int n, int range_l, int range_r) {
int *arr = new int[n];
srand(time(NULL));
for (int i = ; i < n; i++)
arr[i] = rand() % (range_r - range_l + ) + range_l;
return arr;
}
// 生成一个近乎有序的数组
// 首先生成一个含有[0...n-1]的完全有序数组, 之后随机交换swapTimes对数据
// swapTimes定义了数组的无序程度
int *generateNearlyOrderedArray(int n, int swapTimes){
int *arr = new int[n];
for(int i = ; i < n ; i ++ )
arr[i] = i;
srand(time(NULL));
for( int i = ; i < swapTimes ; i ++ ){
int posx = rand()%n;
int posy = rand()%n;
swap( arr[posx] , arr[posy] );
}
return arr;
}
// 拷贝整型数组a中的所有元素到一个新的数组, 并返回新的数组
int *copyIntArray(int a[], int n){
int *arr = new int[n];
//* 在VS中, copy函数被认为是不安全的, 请大家手动写一遍for循环:)
copy(a, a+n, arr);
return arr;
}
// 打印arr数组的所有内容
template<typename T>
void printArray(T arr[], int n) {
for (int i = ; i < n; i++)
cout << arr[i] << " ";
cout << endl;
return;
}
// 判断arr数组是否有序
template<typename T>
bool isSorted(T arr[], int n) {
for (int i = ; i < n - ; i++)
if (arr[i] > arr[i + ])
return false;
return true;
}
// 测试sort排序算法排序arr数组所得到结果的正确性和算法运行时间
template<typename T>
void testSort(const string &sortName, void (*sort)(T[], int), T arr[], int n) {
clock_t startTime = clock();
sort(arr, n);
clock_t endTime = clock();
cout << sortName << " : " << double(endTime - startTime) / CLOCKS_PER_SEC << " s"<<endl;
assert(isSorted(arr, n));
return;
}
};
#endif //INC_02_MERGE_SORT_SORTTESTHELPER_H
插入排序(因为等下优化时需要用到):
#ifndef INC_03_MERGE_SORT_ADVANCE_INSERTIONSORT_H
#define INC_03_MERGE_SORT_ADVANCE_INSERTIONSORT_H
#include <iostream>
#include <algorithm>
using namespace std;
template<typename T>
void insertionSort(T arr[], int n){
for( int i = ; i < n ; i ++ ) {
T e = arr[i];
int j;
for (j = i; j > && arr[j-] > e; j--)
arr[j] = arr[j-];
arr[j] = e;
}
return;
}
// 对arr[l...r]范围的数组进行插入排序
template<typename T>
void insertionSort(T arr[], int l, int r){
for( int i = l+ ; i <= r ; i ++ ) {
T e = arr[i];
int j;
for (j = i; j > l && arr[j-] > e; j--)
arr[j] = arr[j-];
arr[j] = e;
}
return;
}
#endif //INC_03_MERGE_SORT_ADVANCE_INSERTIONSORT_H
一般归并排序:
#ifndef INC_03_MERGE_SORT_ADVANCE_MERGESORT_H
#define INC_03_MERGE_SORT_ADVANCE_MERGESORT_H
#include <iostream>
using namespace std;
// 将arr[l...mid]和arr[mid+1...r]两部分进行归并
template<typename T>
void __merge(T arr[], int l, int mid, int r){
T aux[r-l+];
for( int i = l ; i <= r; i ++ )
aux[i-l] = arr[i];
// 初始化,i指向左半部分的起始索引位置l;j指向右半部分起始索引位置mid+1
int i = l, j = mid+;
for( int k = l ; k <= r; k ++ ){
if( i > mid ){ // 如果左半部分元素已经全部处理完毕
arr[k] = aux[j-l]; j ++;
}
else if( j > r ){ // 如果右半部分元素已经全部处理完毕
arr[k] = aux[i-l]; i ++;
}
else if( aux[i-l] < aux[j-l] ) { // 左半部分所指元素 < 右半部分所指元素
arr[k] = aux[i-l]; i ++;
}
else{ // 左半部分所指元素 >= 右半部分所指元素
arr[k] = aux[j-l]; j ++;
}
}
}
// 递归使用归并排序,对arr[l...r]的范围进行排序
template<typename T>
void __mergeSort(T arr[], int l, int r){
if( l >= r )
return;
int mid = (l+r)/;
__mergeSort(arr, l, mid);
__mergeSort(arr, mid+, r);
__merge(arr, l, mid, r);
}
template<typename T>
void mergeSort(T arr[], int n){
__mergeSort( arr , , n- );
}
#endif //INC_03_MERGE_SORT_ADVANCE_MERGESORT_H
优化后的归并排序:
#include <iostream>
#include "SortTestHelper.h"
#include "InsertionSort.h"
#include "MergeSort.h"
using namespace std;
// 使用优化的归并排序算法, 对arr[l...r]的范围进行排序
template<typename T>
void __mergeSort2(T arr[], int l, int r){
// 优化2: 对于小规模数组, 使用插入排序
if( r - l <= ){
insertionSort(arr, l, r);
return;
}
int mid = (l+r)/;
__mergeSort2(arr, l, mid);
__mergeSort2(arr, mid+, r);
// 优化1: 对于arr[mid] <= arr[mid+1]的情况,不进行merge
// 对于近乎有序的数组非常有效,但是对于一般情况,有一定的性能损失
if( arr[mid] > arr[mid+] )
__merge(arr, l, mid, r);
}
template<typename T>
void mergeSort2(T arr[], int n){
__mergeSort2( arr , , n- );
}
int main() {
int n = ;
// 测试1 一般性测试
cout<<"Test for random array, size = "<<n<<", random range [0, "<<n<<"]"<<endl;
int* arr1 = SortTestHelper::generateRandomArray (n,,n);
int* arr2 = SortTestHelper::copyIntArray(arr1, n);
int* arr3 = SortTestHelper::copyIntArray(arr1, n);
SortTestHelper::testSort("Insertion Sort", insertionSort, arr1, n);
SortTestHelper::testSort("Merge Sort", mergeSort, arr2, n);
SortTestHelper::testSort("Merge Sort 2", mergeSort2, arr3, n);
delete[] arr1;
delete[] arr2;
delete[] arr3;
cout<<endl;
// 测试2 测试近乎有序的数组
int swapTimes = ;
assert( swapTimes >= );
cout<<"Test for nearly ordered array, size = "<<n<<", swap time = "<<swapTimes<<endl;
arr1 = SortTestHelper::generateNearlyOrderedArray(n,swapTimes);
arr2 = SortTestHelper::copyIntArray(arr1, n);
arr3 = SortTestHelper::copyIntArray(arr1, n);
SortTestHelper::testSort("Insertion Sort", insertionSort, arr1, n);
SortTestHelper::testSort("Merge Sort", mergeSort, arr2, n);
SortTestHelper::testSort("Merge Sort 2", mergeSort2, arr3, n);
delete[] arr1;
delete[] arr2;
delete[] arr3;
return ;
}
测试结果:

O(n*logn)级别的算法之一(归并排序及其优化)的更多相关文章
- O(n*logn)级别的算法之二(快速排序)的三种实现方法详解及其与归并排序的对比
一,单路快排1.测试用例: #ifndef INC_06_QUICK_SORT_DEAL_WITH_NEARLY_ORDERED_ARRAY_SORTTESTHELPER_H #define INC_ ...
- 排序算法之归并排序(Mergesort)解析
转自:http://www.cnblogs.com/ayqy/p/4050452.html 一.归并排序的优缺点(pros and cons) 耗费心思来理解它,总要有个理由吧: 归并排序的效率达 ...
- Java常见排序算法之归并排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- 【DS】排序算法之归并排序(Merge Sort)
一.算法思想 归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法的一个非常典型的应用,指的是将两个已经排序的序列合并成一个序列的操作.其归并思想如下: 1)申请空间,使其大小为两个已经 ...
- Python排序搜索基本算法之归并排序实例分析
Python排序搜索基本算法之归并排序实例分析 本文实例讲述了Python排序搜索基本算法之归并排序.分享给大家供大家参考,具体如下: 归并排序最令人兴奋的特点是:不论输入是什么样的,它对N个元素的序 ...
- 归并排序及优化(Java实现)
普通归并排序 public class MergeSort { /** * @param arr 待排序的数组 * @param left 本次归并的左边界 * @param mid 本次归并的中间位 ...
- 谷歌蜂鸟算法对网站seo优化有何影响
http://www.wocaoseo.com/thread-89-1-1.html 谷歌在过去三个月里,非常低调的推出了蜂鸟算法,据谷歌技术员表示,此种方法一出,将影响90%网站的排名, ...
- 用Java写算法之归并排序
转自:http://flyingcat2013.blog.51cto.com/7061638/1281026 前面的三种排序算法(冒泡排序,选择排序,插入排序)在平均情况下均为O(n^2)复杂度,在处 ...
- o(1), o(n), o(logn), o(nlogn)算法复杂度
在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义: 这是算法的时空复杂度的表示.不仅仅用于表示时间复杂 ...
随机推荐
- Chapter 8 The Simplest Plug-in Solution
This chapter introduces the simplest plug-in solution that are applicable to the four major componen ...
- 一次 Java 内存泄漏的排查
由来 前些日子小组内安排值班,轮流看顾我们的服务,主要做一些报警邮件处理.Bug 排查.运营 issue 处理的事.工作日还好,无论干什么都要上班的,若是轮到周末,那这一天算是毁了. 不知道是公司网络 ...
- Akka-CQRS(1)- Write-side, Persisting event sources:CQRS存写端操作方式
上篇我们提到CQRS是一种读写分离式高并发.大流量数据录入体系,其中存写部分是通过event-sourcing+akka-persistence实现的.也可以这样理解:event-sourcing(事 ...
- Javascript高级编程学习笔记(51)—— DOM2和DOM3(3)操作样式表
操作样式表 在JS中样式表用一种类型来表示,以便我们在JS对其进行操作 这一类型就是CSSStyleSheet 即CSS样式表类型,包括了之前 style 对象所不包括的外部样式表以及嵌入样式表 其中 ...
- Java学习笔记一:数据类型I
GitHub代码练习地址:https://github.com/Neo-ML/JavaPractice/blob/master/IntPractice1.java https://github.com ...
- DOS窗口查看端口占用
背景:最近用tomcat,一直访问不了,要账号密码登录,最后发现问题原因根本是tomcat的默认端口号8080被占用了,下面介绍如何通过dos窗口找到占用端口的进程. 方法: 打开DOS窗口,输入ne ...
- iframe简单框架
<iframe width='738' height='523' class='preview-iframe' scrolling='no' frameborder='0' src='http: ...
- eclipse如何使用log4j详解,你get了吗???
1.下载log4j jar包 log4j下载地址 http://logging.apache.org/log4j/2.x/download.html 2.log4j jar包引入项目 接下来 ...
- 远程桌面连接:出现身份验证错误,要求的函数不受支持,可能是由于CredSSP加密Oracle修正的解决方法
在做app时需要连接服务器来进行数据交互,但是在阿里云页面里连接服务器太不好用,所以使用windows自带的远程连接来进行. 一.但是连接的过程中出现了以下问题: 二.最初是有点迷茫的,不知道从哪里下 ...
- Debian/Ubuntu清理硬盘空间的8个技巧
1. 删除残余的配置文件 通常Debian/Ubuntu删除软件包可以用两条命令 sudo apt-get remove <package-name> sudo apt-get purge ...