android图片特效处理之模糊效果
这篇将讲到图片特效处理的模糊效果。跟前面一样是对像素点进行处理,算法是通用的,但耗时会更长,至于为什么,看了下面的代码你就会明白。
算法:
一、简单算法:将像素点周围八个点包括自身一共九个点的RGB值分别相加后平均,作为当前像素点的RGB值,即可实现效果。
举例:
ABC
DEF
GHI
假如当前点是E,那么会有:
E.r = (A.r + B.r + C.r + D.r + E.r + F.r + G.r + H.r + I.r) /9 // r表示的是E像素点RGB值的R值 E.r = (A.r + B.r + C.r + D.r + E.r + F.r + G.r + H.r + I.r) / 9 // r表示的是E像素点RGB值的R值
E像素点的GB值类似。
二、采用高斯模糊:
高斯矩阵:
int[] gauss = new int[] { 1, 2, 1, 2, 4, 2, 1, 2, 1 };
nt[] gauss = new int[] { 1, 2, 1, 2, 4, 2, 1, 2, 1 };
算法是:将九个点的RGB值分别与高斯矩阵中的对应项相乘的和,然后再除以一个相应的值作为当前像素点的RGB值。
举例:(还是上面的九个点)
假如当前点是E,那么会有:
int delta = 16;
E.r =( A.r * gauss[0] + B.r * gauss[1] + C.r * gauss[2] + D.r * gauss[3] + E.r * gauss[4] + F.r * gauss[5] + G.r * gauss[6] + H.r * gauss[7] + I.r * gauss[8]) / delta int delta = 16;
E.r =( A.r * gauss[0] + B.r * gauss[1] + C.r * gauss[2] + D.r * gauss[3] + E.r * gauss[4] + F.r * gauss[5] + G.r * gauss[6] + H.r * gauss[7] + I.r * gauss[8]) / delta
E像素点的GB值类似,delta的取值貌似没有规定值,可以自己设置任意值,但要想达到效果,能设的值很少,下面图片是值为16的效果。
处理效果:
原图片:


两种处理方式的代码:
/**
* 模糊效果
* @param bmp
* @return
*/
private Bitmap blurImage(Bitmap bmp)
{
int width = bmp.getWidth();
int height = bmp.getHeight();
Bitmap bitmap = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565); int pixColor = 0; int newR = 0;
int newG = 0;
int newB = 0; int newColor = 0; int[][] colors = new int[9][3];
for (int i = 1, length = width - 1; i < length; i++)
{
for (int k = 1, len = height - 1; k < len; k++)
{
for (int m = 0; m < 9; m++)
{
int s = 0;
int p = 0;
switch(m)
{
case 0:
s = i - 1;
p = k - 1;
break;
case 1:
s = i;
p = k - 1;
break;
case 2:
s = i + 1;
p = k - 1;
break;
case 3:
s = i + 1;
p = k;
break;
case 4:
s = i + 1;
p = k + 1;
break;
case 5:
s = i;
p = k + 1;
break;
case 6:
s = i - 1;
p = k + 1;
break;
case 7:
s = i - 1;
p = k;
break;
case 8:
s = i;
p = k;
}
pixColor = bmp.getPixel(s, p);
colors[m][0] = Color.red(pixColor);
colors[m][1] = Color.green(pixColor);
colors[m][2] = Color.blue(pixColor);
} for (int m = 0; m < 9; m++)
{
newR += colors[m][0];
newG += colors[m][1];
newB += colors[m][2];
} newR = (int) (newR / 9F);
newG = (int) (newG / 9F);
newB = (int) (newB / 9F); newR = Math.min(255, Math.max(0, newR));
newG = Math.min(255, Math.max(0, newG));
newB = Math.min(255, Math.max(0, newB)); newColor = Color.argb(255, newR, newG, newB);
bitmap.setPixel(i, k, newColor); newR = 0;
newG = 0;
newB = 0;
}
} return bitmap;
} /**
* 柔化效果(高斯模糊)(优化后比上面快三倍)
* @param bmp
* @return
*/
private Bitmap blurImageAmeliorate(Bitmap bmp)
{
long start = System.currentTimeMillis();
// 高斯矩阵
int[] gauss = new int[] { 1, 2, 1, 2, 4, 2, 1, 2, 1 }; int width = bmp.getWidth();
int height = bmp.getHeight();
Bitmap bitmap = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565); int pixR = 0;
int pixG = 0;
int pixB = 0; int pixColor = 0; int newR = 0;
int newG = 0;
int newB = 0; int delta = 16; // 值越小图片会越亮,越大则越暗 int idx = 0;
int[] pixels = new int[width * height];
bmp.getPixels(pixels, 0, width, 0, 0, width, height);
for (int i = 1, length = height - 1; i < length; i++)
{
for (int k = 1, len = width - 1; k < len; k++)
{
idx = 0;
for (int m = -1; m <= 1; m++)
{
for (int n = -1; n <= 1; n++)
{
pixColor = pixels[(i + m) * width + k + n];
pixR = Color.red(pixColor);
pixG = Color.green(pixColor);
pixB = Color.blue(pixColor); newR = newR + (int) (pixR * gauss[idx]);
newG = newG + (int) (pixG * gauss[idx]);
newB = newB + (int) (pixB * gauss[idx]);
idx++;
}
} newR /= delta;
newG /= delta;
newB /= delta; newR = Math.min(255, Math.max(0, newR));
newG = Math.min(255, Math.max(0, newG));
newB = Math.min(255, Math.max(0, newB)); pixels[i * width + k] = Color.argb(255, newR, newG, newB); newR = 0;
newG = 0;
newB = 0;
}
} bitmap.setPixels(pixels, 0, width, 0, 0, width, height);
long end = System.currentTimeMillis();
Log.d("may", "used time="+(end - start));
return bitmap;
}
/**
* 模糊效果
* @param bmp
* @return
*/
private Bitmap blurImage(Bitmap bmp)
{
int width = bmp.getWidth();
int height = bmp.getHeight();
Bitmap bitmap = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565); int pixColor = 0; int newR = 0;
int newG = 0;
int newB = 0; int newColor = 0; int[][] colors = new int[9][3];
for (int i = 1, length = width - 1; i < length; i++)
{
for (int k = 1, len = height - 1; k < len; k++)
{
for (int m = 0; m < 9; m++)
{
int s = 0;
int p = 0;
switch(m)
{
case 0:
s = i - 1;
p = k - 1;
break;
case 1:
s = i;
p = k - 1;
break;
case 2:
s = i + 1;
p = k - 1;
break;
case 3:
s = i + 1;
p = k;
break;
case 4:
s = i + 1;
p = k + 1;
break;
case 5:
s = i;
p = k + 1;
break;
case 6:
s = i - 1;
p = k + 1;
break;
case 7:
s = i - 1;
p = k;
break;
case 8:
s = i;
p = k;
}
pixColor = bmp.getPixel(s, p);
colors[m][0] = Color.red(pixColor);
colors[m][1] = Color.green(pixColor);
colors[m][2] = Color.blue(pixColor);
} for (int m = 0; m < 9; m++)
{
newR += colors[m][0];
newG += colors[m][1];
newB += colors[m][2];
} newR = (int) (newR / 9F);
newG = (int) (newG / 9F);
newB = (int) (newB / 9F); newR = Math.min(255, Math.max(0, newR));
newG = Math.min(255, Math.max(0, newG));
newB = Math.min(255, Math.max(0, newB)); newColor = Color.argb(255, newR, newG, newB);
bitmap.setPixel(i, k, newColor); newR = 0;
newG = 0;
newB = 0;
}
} return bitmap;
} /**
* 柔化效果(高斯模糊)(优化后比上面快三倍)
* @param bmp
* @return
*/
private Bitmap blurImageAmeliorate(Bitmap bmp)
{
long start = System.currentTimeMillis();
// 高斯矩阵
int[] gauss = new int[] { 1, 2, 1, 2, 4, 2, 1, 2, 1 }; int width = bmp.getWidth();
int height = bmp.getHeight();
Bitmap bitmap = Bitmap.createBitmap(width, height, Bitmap.Config.RGB_565); int pixR = 0;
int pixG = 0;
int pixB = 0; int pixColor = 0; int newR = 0;
int newG = 0;
int newB = 0; int delta = 16; // 值越小图片会越亮,越大则越暗 int idx = 0;
int[] pixels = new int[width * height];
bmp.getPixels(pixels, 0, width, 0, 0, width, height);
for (int i = 1, length = height - 1; i < length; i++)
{
for (int k = 1, len = width - 1; k < len; k++)
{
idx = 0;
for (int m = -1; m <= 1; m++)
{
for (int n = -1; n <= 1; n++)
{
pixColor = pixels[(i + m) * width + k + n];
pixR = Color.red(pixColor);
pixG = Color.green(pixColor);
pixB = Color.blue(pixColor); newR = newR + (int) (pixR * gauss[idx]);
newG = newG + (int) (pixG * gauss[idx]);
newB = newB + (int) (pixB * gauss[idx]);
idx++;
}
} newR /= delta;
newG /= delta;
newB /= delta; newR = Math.min(255, Math.max(0, newR));
newG = Math.min(255, Math.max(0, newG));
newB = Math.min(255, Math.max(0, newB)); pixels[i * width + k] = Color.argb(255, newR, newG, newB); newR = 0;
newG = 0;
newB = 0;
}
} bitmap.setPixels(pixels, 0, width, 0, 0, width, height);
long end = System.currentTimeMillis();
Log.d("may", "used time="+(end - start));
return bitmap;
}
在优化后的代码中要注意了,pixels数组不能超过规定的大小,也就是说图片的尺寸不能太大,否则会栈内存溢出。
转自:http://blog.csdn.net/sjf0115/article/details/7266998
android图片特效处理之模糊效果的更多相关文章
- android 图片特效处理之模糊效果
这篇将讲到图片特效处理的模糊效果.跟前面一样是对像素点进行处理,算法是通用的,但耗时会更长,至于为什么,看了下面的代码你就会明白. 算法: 一.简单算法:将像素点周围八个点包括自身一共九个点的RGB值 ...
- android 图片特效处理之 光晕效果
这篇将讲到图片特效处理的图片光晕效果.跟前面一样是对像素点进行处理,本篇实现的思路可参见android图像处理系列之九--图片特效处理之二-模糊效果和android图像处理系列之十三--图片特效处理之 ...
- android 图片特效处理之光晕效果
这篇将讲到图片特效处理的图片光晕效果.跟前面一样是对像素点进行处理,本篇实现的思路可参见android图像处理系列之九--图片特效处理之二-模糊效果和android图像处理系列之十三--图片特效处理之 ...
- android图片特效处理之光晕效果
这篇将讲到图片特效处理的图片光晕效果.跟前面一样是对像素点进行处理,本篇实现的思路可参见android图像处理系列之九--图片特效处理之二-模糊效果和android图像处理系列之十三--图片特效处理之 ...
- android 图片特效处理之 图片叠加
这篇将讲到图片特效处理的图片叠加效果.跟前面一样是对像素点进行处理,可参照前面的android图像处理系列之七--图片涂鸦,水印-图片叠加和android图像处理系列之六--给图片添加边框(下)-图片 ...
- android 图片特效处理之图片叠加
这篇将讲到图片特效处理的图片叠加效果.跟前面一样是对像素点进行处理,可参照前面的android图像处理系列之七--图片涂鸦,水印-图片叠加和android图像处理系列之六--给图片添加边框(下)-图片 ...
- android 图片特效处理之怀旧效果
图片特效处理系列将介绍图片的像素点的特效处理,这些物资注重的是原理.也就是说只要你知道这些算法不管是C++,VB,C#,Java都可以做出相同的特效.下面将介绍图片怀旧效果的算法.算法如下: 上面公式 ...
- android图片特效处理之怀旧效果
图片特效处理系列将介绍图片的像素点的特效处理,这些物资注重的是原理.也就是说只要你知道这些算法不管是C++,VB,C#,Java都可以做出相同的特效.下面将介绍图片怀旧效果的算法.算法如下: 上面公式 ...
- android图片特效处理之图片叠加
这篇将讲到图片特效处理的图片叠加效果.跟前面一样是对像素点进行处理,可参照前面的android图像处理系列之七--图片涂鸦,水印-图片叠加和android图像处理系列之六--给图片添加边框(下)-图片 ...
随机推荐
- error while loading shared libraries: lib******: cannot open shared object file: No such file or directory
程序编译成功后,运行时错误: error while loading shared libraries: libevent-2.0.so.5: cannot open shared object fi ...
- 原生JS默认设置默认值的写法
json=json||{};json.type=json.type||'get';json.data=json.data||{};json.time=json.time||2000;
- ESB的XmlProPertyMgr类的getNode(xxx)方法
//------------------------------------------------------------------------------ public static Eleme ...
- BootCamp支持软件4/5
按 Mac 机型列出的 Boot Camp 要求 不同的 Mac 电脑适用不同版本的 Windows.如果您不知道您拥有的 Mac 是什么机型,请从 Apple 菜单中选取“关于本机”. 每个表格条目 ...
- WinForm控件使用文章收藏整理完成
对C# WinForm开发系列收集的控件使用方面进行整理, 加入了一些文章, 不断补充充实, 完善这方面. 基础 - 常用控件 C# WinForm开发系列 - CheckBox/Button/Lab ...
- socket的异步回调函数,采用一问一答
socket.Send(buf); AsyncCallback callback = new AsyncCallback(ReceiveData5); mysocket.BeginReceive(Wi ...
- Linux 调节屏幕亮度
intel的核心显卡驱动是在 /sys/class/backlight/intel_backlight/ 目录下面的brightness文件中配置的. 可以通过查看max_brightness的值来确 ...
- Java集合框架(JCF)之collention
一.概念:是为了实现某一目的或功能而预先提供的一系列封装好了的具有继承或实现的类与接口. 二.特点: 1.元素的类型可以不同 2.集合长度可变 3.空间不固定 三.collection与collec ...
- 非常好的在网页中显示pdf的方法
今天有一需求,要在网页中显示pdf,于是立马开始搜索解决方案,无意中发现一个非常好的解决方法,详见http://blogs.adobe.com/pdfdevjunkie/web_designers_g ...
- Python抓取页面中超链接(URL)的三中方法比较(HTMLParser、pyquery、正则表达式) <转>
Python抓取页面中超链接(URL)的3中方法比较(HTMLParser.pyquery.正则表达式) HTMLParser版: #!/usr/bin/python # -*- coding: UT ...