前言

看一个题目:

这个问题就是求最小生成树,是图转换为树的一种方式。

最小生成树概念:

最小生成树简称MST。

1.n个顶点,一定有n-1条边

2.包含全部顶点。

3.图转换为最小生成树,权重之和最小。

解题思路:

  1. 假设从a开始为顶点,找到和a相接的最小边。

  2. 在图中和a相接的是G,那么选择条。然后找到和A、G相接的最小边,是BG,然后选择BG这条边。

  3. 以此类推。

正文

代码:

static void Main(string[] args)
{
char[] data = new char[] { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
int verxs = data.Length;
//邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
int[,] weight = new int[,]{
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,10000},
{10000,9,10000,10000,10000,4,10000},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000},};
//创建要修的路,初始化节点的个数
MGraph mGraph = new MGraph(verxs);
//创建一个MinTree对象
MinTree minTree = new MinTree();
minTree.createGraph(mGraph, verxs, data, weight);
Console.WriteLine("显示原始图");
minTree.showGraph(mGraph);
var newGraph=minTree.prim(mGraph, 0);
Console.WriteLine("显示最小生成树图");
minTree.showGraph(newGraph);
Console.Read();
}
} class MinTree {
//不污染数据
public void createGraph(MGraph mGraph, int verxs, char[] data, int[,] weight)
{
for (int i = 0; i < verxs; i++)
{
mGraph.data[i] = data[i];
for (int j = 0; j < verxs; j++)
{
mGraph.weight[i,j] = weight[i,j];
}
}
}
//遍历图
public void showGraph(MGraph mGraph)
{
for (int i=0;i<mGraph.verxs;i++)
{
for (int j = 0; j < mGraph.verxs; j++)
{
Console.Write(mGraph.weight[i,j]+" ");
}
Console.WriteLine();
}
} /// <summary>
/// 图转树核心算法
/// </summary>
/// <param name="mGraph">原始图</param>
/// <param name="v">初始化访问节点</param>
public MGraph prim(MGraph mGraph,int v)
{
int[] isVisited = new int[mGraph.verxs];
isVisited[v] = 1;
int y = -1;//y为数组竖轴
int x = -1;//x为数组横轴
MGraph newGraph = new MGraph(mGraph.verxs);
newGraph.data = (char[])mGraph.data.Clone();
int minWeight = 1000;
//一共要计算出verxs-1条边
for (int k=1;k<mGraph.verxs;k++)
{
for (int i=0;i<mGraph.verxs;i++)
{
for (int j = 0; j < mGraph.verxs ; j++)
{
if (isVisited[i] == 1 && isVisited[j] == 0 && mGraph.weight[i, j] < minWeight)
{
y = i;
x = j;
minWeight = mGraph.weight[i, j];
}
}
}
Console.WriteLine("在"+mGraph.data[y]+"和"+ mGraph.data[x]+"之间修了一条权重为"+minWeight+"的路");
newGraph.weight[y,x] = minWeight;
isVisited[x] = 1;
minWeight = 1000;
}
return newGraph;
}
}

结果:

重新整理数据结构与算法(c#)——算法套路普利姆算法[二十九]的更多相关文章

  1. 最小生成树-普利姆算法eager实现

    算法描述 在普利姆算法的lazy实现中,参考:普利姆算法的lazy实现 我们现在来考虑这样一个问题: 我们将所有的边都加入了优先队列,但事实上,我们真的需要所有的边吗? 我们再回到普利姆算法的lazy ...

  2. 最小生成树-普利姆算法lazy实现

    算法描述 lazy普利姆算法的步骤: 1.从源点s出发,遍历它的邻接表s.Adj,将所有邻接的边(crossing edges)加入优先队列Q: 2.从Q出队最轻边,将此边加入MST. 3.考察此边的 ...

  3. 普利姆算法(prim)

    普利姆算法(prim)求最小生成树(MST)过程详解 (原网址) 1 2 3 4 5 6 7 分步阅读 生活中最小生成树的应用十分广泛,比如:要连通n个城市需要n-1条边线路,那么怎么样建设才能使工程 ...

  4. 算法与数据结构(五) 普利姆与克鲁斯卡尔的最小生成树(Swift版)

    上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索.本篇博客就在上一篇博客的基础上进行延伸,也是关于图的.今天博客中主要介绍两种算法,都是关于最小生 ...

  5. HDU 1879 继续畅通工程 (Prim(普里姆算法)+Kruskal(克鲁斯卡尔))

    继续畅通工程 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  6. 最小生成树-普利姆(Prim)算法

    最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...

  7. 图论---最小生成树----普利姆(Prim)算法

    普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一 ...

  8. 查找最小生成树:普里姆算法算法(Prim)算法

    一.算法介绍 普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之 ...

  9. hdu 1233:还是畅通工程(数据结构,图,最小生成树,普里姆(Prim)算法)

    还是畅通工程 Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submis ...

  10. c/c++ 用普利姆(prim)算法构造最小生成树

    c/c++ 用普利姆(prim)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: ​ 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路.这时 ...

随机推荐

  1. C++ //提高编程 模板(泛型编程 STL) //模板不可以直接使用 它只是一个框架 //模板的通用并不是万能的 //语法 //template<typename T> //函数模板两种方式 //1.自动类型推导 必须推导出一致的数据类型T,才可以使用 //2.显示指定类型 模板必须确定出T的数据类型,才可以使用

    1 //C++提高编程 模板(泛型编程 STL) 2 //模板不可以直接使用 它只是一个框架 3 //模板的通用并不是万能的 4 //语法 5 //template<typename T> ...

  2. vue使用cordova的大坑!!

    额,前段时间用 cordova 包了个 vue 项目,跑真机,完美.跑公司安卓系统虚拟机,垮. 原因找了很久,最后发现是路由的问题,使用了 createWebHistory ,去掉了 hash ,虽然 ...

  3. 基于 Mindspore 框架与 ModelArts 平台的 MNIST 手写体识别实验

    简介 实验包含 2部分: 基于 Mindspore 框架的模型本地训练及预测 基于 Modelarts 平台和 PyTorch框架的模型训练及部署 基于 Mindspore 框架的模型本地训练及预测 ...

  4. kubernetes 1.20版本 二进制部署

    kubernetes 1.20版本 二进制部署 目录 kubernetes 1.20版本 二进制部署 1. 前言 2. 环境准备 2.1 机器规划 2.2 软件版本 3. 搭建集群 3.1 机器基本配 ...

  5. obs 录制教程 手机录屏用 向日葵 手机投屏 能用有线用有线的连接

    obs 录制教程 手机录屏用 向日葵 手机投屏 稍微有点卡 华为手机有个投屏 笔记本不支持这个 miracast 淘宝有卖 投屏设备的,搜 miracast 100多米 免费的就用向日葵就得了. 最新 ...

  6. 霞鹜文楷 字体推荐 - 'Fira Code', '霞鹜文楷等宽 Light',

    霞鹜文楷 字体推荐 字体推荐 在vscode里面 'Fira Code', '霞鹜文楷等宽 Light', 仓库 https://github.com/lxgw/LxgwWenKai https:// ...

  7. springboot+vue3+nuxt3+ts+minio开发的dsblog3.0前后端博客

    springboot+vue3+nuxt3+ts+minio开发的dsblog3.0前后端博客 转载自:www.javaman.cn 一.技术栈 本博客系统采用了先进且成熟的技术栈,包括Spring ...

  8. Linux下编译成静态库和动态库,引入到项目中

    目录 配置全局变量 编译动态库和静态库: 动态库编译 静态库编译 AS mk 方式加载静态库和动态库 配置build.gradle 加载静态库方法 将libget.a考入到项目中 配置Android. ...

  9. 3DCAT实时云渲染助力广府庙会元宇宙焕新亮相,开启线上奇趣之旅!

    超 400 万人次打卡,商圈营业额逾 3.6 亿元,2023 年广府庙会于2023年2月11日圆满落幕. 活动期间,佳境美如画,融合VR.AR.虚拟直播等技术的广府庙会元宇宙焕新亮相,群众只需点击一个 ...

  10. SnapHelper源码深度解析

    目录介绍 01.SnapHelper简单介绍 1.1 SnapHelper作用 1.2 SnapHelper类分析 1.3 LinearSnapHelper类分析 1.4 PagerSnapHelpe ...