前言

看一个题目:

这个问题就是求最小生成树,是图转换为树的一种方式。

最小生成树概念:

最小生成树简称MST。

1.n个顶点,一定有n-1条边

2.包含全部顶点。

3.图转换为最小生成树,权重之和最小。

解题思路:

  1. 假设从a开始为顶点,找到和a相接的最小边。

  2. 在图中和a相接的是G,那么选择条。然后找到和A、G相接的最小边,是BG,然后选择BG这条边。

  3. 以此类推。

正文

代码:

static void Main(string[] args)
{
char[] data = new char[] { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
int verxs = data.Length;
//邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
int[,] weight = new int[,]{
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,10000},
{10000,9,10000,10000,10000,4,10000},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000},};
//创建要修的路,初始化节点的个数
MGraph mGraph = new MGraph(verxs);
//创建一个MinTree对象
MinTree minTree = new MinTree();
minTree.createGraph(mGraph, verxs, data, weight);
Console.WriteLine("显示原始图");
minTree.showGraph(mGraph);
var newGraph=minTree.prim(mGraph, 0);
Console.WriteLine("显示最小生成树图");
minTree.showGraph(newGraph);
Console.Read();
}
} class MinTree {
//不污染数据
public void createGraph(MGraph mGraph, int verxs, char[] data, int[,] weight)
{
for (int i = 0; i < verxs; i++)
{
mGraph.data[i] = data[i];
for (int j = 0; j < verxs; j++)
{
mGraph.weight[i,j] = weight[i,j];
}
}
}
//遍历图
public void showGraph(MGraph mGraph)
{
for (int i=0;i<mGraph.verxs;i++)
{
for (int j = 0; j < mGraph.verxs; j++)
{
Console.Write(mGraph.weight[i,j]+" ");
}
Console.WriteLine();
}
} /// <summary>
/// 图转树核心算法
/// </summary>
/// <param name="mGraph">原始图</param>
/// <param name="v">初始化访问节点</param>
public MGraph prim(MGraph mGraph,int v)
{
int[] isVisited = new int[mGraph.verxs];
isVisited[v] = 1;
int y = -1;//y为数组竖轴
int x = -1;//x为数组横轴
MGraph newGraph = new MGraph(mGraph.verxs);
newGraph.data = (char[])mGraph.data.Clone();
int minWeight = 1000;
//一共要计算出verxs-1条边
for (int k=1;k<mGraph.verxs;k++)
{
for (int i=0;i<mGraph.verxs;i++)
{
for (int j = 0; j < mGraph.verxs ; j++)
{
if (isVisited[i] == 1 && isVisited[j] == 0 && mGraph.weight[i, j] < minWeight)
{
y = i;
x = j;
minWeight = mGraph.weight[i, j];
}
}
}
Console.WriteLine("在"+mGraph.data[y]+"和"+ mGraph.data[x]+"之间修了一条权重为"+minWeight+"的路");
newGraph.weight[y,x] = minWeight;
isVisited[x] = 1;
minWeight = 1000;
}
return newGraph;
}
}

结果:

重新整理数据结构与算法(c#)——算法套路普利姆算法[二十九]的更多相关文章

  1. 最小生成树-普利姆算法eager实现

    算法描述 在普利姆算法的lazy实现中,参考:普利姆算法的lazy实现 我们现在来考虑这样一个问题: 我们将所有的边都加入了优先队列,但事实上,我们真的需要所有的边吗? 我们再回到普利姆算法的lazy ...

  2. 最小生成树-普利姆算法lazy实现

    算法描述 lazy普利姆算法的步骤: 1.从源点s出发,遍历它的邻接表s.Adj,将所有邻接的边(crossing edges)加入优先队列Q: 2.从Q出队最轻边,将此边加入MST. 3.考察此边的 ...

  3. 普利姆算法(prim)

    普利姆算法(prim)求最小生成树(MST)过程详解 (原网址) 1 2 3 4 5 6 7 分步阅读 生活中最小生成树的应用十分广泛,比如:要连通n个城市需要n-1条边线路,那么怎么样建设才能使工程 ...

  4. 算法与数据结构(五) 普利姆与克鲁斯卡尔的最小生成树(Swift版)

    上篇博客我们聊了图的物理存储结构邻接矩阵和邻接链表,然后在此基础上给出了图的深度优先搜索和广度优先搜索.本篇博客就在上一篇博客的基础上进行延伸,也是关于图的.今天博客中主要介绍两种算法,都是关于最小生 ...

  5. HDU 1879 继续畅通工程 (Prim(普里姆算法)+Kruskal(克鲁斯卡尔))

    继续畅通工程 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  6. 最小生成树-普利姆(Prim)算法

    最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...

  7. 图论---最小生成树----普利姆(Prim)算法

    普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一 ...

  8. 查找最小生成树:普里姆算法算法(Prim)算法

    一.算法介绍 普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之 ...

  9. hdu 1233:还是畅通工程(数据结构,图,最小生成树,普里姆(Prim)算法)

    还是畅通工程 Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submis ...

  10. c/c++ 用普利姆(prim)算法构造最小生成树

    c/c++ 用普利姆(prim)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: ​ 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路.这时 ...

随机推荐

  1. 从零开始搭建Springboot开发环境(Java8+Git+Maven+MySQL+Idea)之一步到位

    说明 所谓万事开头难,对于初学Java和Springboot框架的小伙伴往往会花不少时间在开发环境搭建上面.究其原因其实还是不熟悉,作为在IT界摸爬滚打数年的老司机,对于各种开发环境搭建已经了然于胸, ...

  2. 如何避免MYSQL主从延迟带来的读写问题?

    在MYSQL 部署架构选型上,许多公司都会用到主从读写分离的架构,如下是一个一主一从的架构,主库master负责写入,从库slave进行读取. 但是既然是读写分离,必然会面临这样一个问题,当在主库上进 ...

  3. OPPO 后端面试凉经(附详细参考答案)

    这篇文章的问题来源于一个读者之前分享的 OPPO 后端凉经,我对比较典型的一些问题进行了分类并给出了详细的参考答案.希望能对正在参加面试的朋友们能够有点帮助! Java String 为什么是不可变的 ...

  4. 视觉slam十四讲CH5 ---相机与图像

    视觉slam十四讲 ---CH5 相机与图像 视觉slam中,作为主要传感器的相机自然起到着重要的作用,而相机拍摄的图像及其处理也是我们要做的工作之一. 1. 相机模型 单目相机的针孔模型 上图中的模 ...

  5. Java加密技术(五)——非对称加密算法的由来DH

    Java非对称加密算法dh     接下来我们分析DH加密算法,一种适基于密钥一致协议的加密算法. DH Diffie-Hellman算法(D-H算法),密钥一致协议.是由公开密钥密码体制的奠基人Di ...

  6. Handler源码解析

    Handler源码解析 一.基本原理回顾 在android开发中,经常会在子线程中进行一些操作,当操作完毕后会通过handler发送一些数据给主线程,通知主线程做相应的操作. 探索其背后的原理:子线程 ...

  7. 巧用Maya轴心操作小技巧,工作事半功倍!

    Maya 是一款专业的三维软件,可以用于创建规模宏大的世界.复杂的角色和炫酷的特效.Maya的用户遍布动画行业.影视特效.广告和片头.平面设计行业,用户数量十分庞大.本文分享了maya轴心操作的小技巧 ...

  8. clickhouse使用心得

    clickhouse目前用在实时BI后台,只要数据稳定落库了,出报表很快,临时查询也很快,在使用过程中,对它的一些优点和不足也是深有体会,这里总结一下,不能做到面面俱到,但尽可能详细的介绍实际应用需要 ...

  9. 使用apache发布网站

    只要建立网站和修改apache的配置文件即可 记事本打开apache\conf下的httpd.conf 用搜索找到DocumentRoot DocumentRoot是设置对外发布的网站目录的命令 将目 ...

  10. PagerAdapter深度解析和实践优化

    目录介绍 01.PagerAdapter简单介绍 02.PagerAdapter抽象方法 03.PagerAdapter原理介绍 04.PagerAdapter缓存和销毁 05.自定义PagerAda ...