A-06 最小角回归法
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html
最小角回归法
最小角回归相当于前向选择法和前向梯度法的一个折中算法,简化了前项梯度法因\(\epsilon\)的迭代过程,并在一定程度的保证了前向梯度法的精准度。
通常用最小角回归法解决线性模型的回归系数。对于一个有\(m\)个样本,每个样本有\(n\)个特征的训练集而言,假设可以拟合一个线性模型\(Y=\omega^TX\),其中\(Y\)是\(m*1\)的向量,\(X\)是\(m*n\)的矩阵,\(\omega\)是\(n*1\)的向量。即可通过最小角回归法求得最小化该模型的参数\(\omega\)。
首先把矩阵\(X\)看成\(n\)个\(m*1\)的向量\(X_i \quad(i=1,2,\cdots,n)\),之后选择与向量\(Y\)余弦相似度最大,即与\(Y\)最为接近的一个变量\(X_i\),使用类似于前向选择法中的残差计算方法得到新的目标\(Y_{err}\),此时不同于前向梯度法的一小步一小步走,而是走到出现一个\(X_j\quad(j=1,2,i-1,i+1,\cdots,n)\)的时候,此时\(X_i\)和\(Y_{err}\)的余弦相似度等于\(X_j\)和\(Y_{err}\)的余弦相似度,这个时候残差\(Y_{err}\)沿着\(X_i\)和\(X_j\)的角平分线方向走,知道出现第三个特征\(X_k\)和\(Y_{err}\)的相关度等于\(X_i\)和\(Y_{err}\)的余弦相似度等于\(X_j\)和\(Y_{err}\)的余弦相似度的时候,使用这三者的共同角平分线,作为残差\(Y_{err}\)的路径方向,直到所有变量取完了,停止算法,即可得到\(\omega\)。
一、举例
# 举例图例
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
# X1*w1
plt.annotate(xytext=(2, 5), xy=(8, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(6, 4.5, s='$X_1*\omega_1$', color='g')
# X1
plt.annotate(xytext=(2, 5), xy=(4, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(2.5, 4.5, s='$X_1$', color='g')
# X2
plt.annotate(xytext=(2, 5), xy=(3, 7), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(2, 6, s='$X_2$', color='g')
# Y
plt.annotate(xytext=(2, 5), xy=(12, 8), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(5, 7.5, s='$Y$', color='g')
# X1
plt.annotate(xytext=(8, 5), xy=(10, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(8.5, 4.5, s='$X_1$', color='g')
# X2
plt.annotate(xytext=(8, 5), xy=(9, 7), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(8, 6, s='$X_2$', color='g')
# w2(X1+X2)
plt.annotate(xytext=(8, 5), xy=(12, 8), s='', color='r',
arrowprops=dict(arrowstyle="->", color='gray'))
plt.text(10.5, 6.3, s='$(X_1+X_2)\omega_2$', color='g')
plt.xlim(0, 13)
plt.ylim(2, 13)
plt.title('最小角回归法举例', fontproperties=font, fontsize=20)
plt.show()

上图假设\(X\)为\(2\)维,首先可以看出,离\(Y\)最接近的是\(X_1\),首先在\(X_1\)上走一段距离,知道残差和\(X_1\)的相关度等于残差和\(X_2\)的相关度,即残差在\(X_1\)和\(X_2\)的角平分线上,由于\(X\)为\(2\)维,此时沿着角平分线走,直到残差足够小时停止,如果此时\(X\)不是\(2\)维,则继续选择第3个、第4个特征走下去。
二、最小角回归法优缺点
2.1 优点
- 特别适合特征维度高于样本数的情况
2.2 缺点
- 迭代方向是根据目标的残差定的,所以算法对训练集中的噪声特别敏感
三、小结
前向选择法由于涉及到投影,只能给出一个近似解;前向梯度法则需要自己手动调试一个很好的\(\epsilon\)参数;最小角回归法结合了两者的优点,但是至于算法具体好坏害的取决于训练集,即算法的稳定性无法保证。
对算法具体计算有兴趣的同学,可以参考Bradley Efron的论文《Least Angle Regression》,https://pan.baidu.com/s/10if9FGdkwEZ4_BolzCGszA ,如果你下载看了,恭喜你入坑。
A-06 最小角回归法的更多相关文章
- Lasso回归算法: 坐标轴下降法与最小角回归法小结
前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结.里面对线程回归的正则化也做了一个初步的介绍.提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归.但是对 ...
- 机器学习方法:回归(三):最小角回归Least Angle Regression(LARS),forward stagewise selection
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 希望与志同道合的朋友一起交流,我刚刚设立了了一个技术交流QQ群:433250724,欢迎对算法.技术.应用感 ...
- 最小角回归 LARS算法包的用法以及模型参数的选择(R语言 )
Lasso回归模型,是常用线性回归的模型,当模型维度较高时,Lasso算法通过求解稀疏解对模型进行变量选择.Lars算法则提供了一种快速求解该模型的方法.Lars算法的基本原理有许多其他文章可以参考, ...
- LARS 最小角回归算法简介
最近开始看Elements of Statistical Learning, 今天的内容是线性模型(第三章..这本书东西非常多,不知道何年何月才能读完了),主要是在看变量选择.感觉变量选择这一块领域非 ...
- 从最小角回归(LARS)中学到的一个小知识(很短)
[转载请注明出处]http://www.cnblogs.com/mashiqi (居然有朋友说内容不接地气,那么我就再加一段嘛,请喜欢读笑话的同学直接看第二段)假设这里有一组向量$\left\{ x_ ...
- 【HDU3374】 String Problem (最小最大表示法+KMP)
String Problem Description Give you a string with length N, you can generate N strings by left shift ...
- 对数几率回归法(梯度下降法,随机梯度下降与牛顿法)与线性判别法(LDA)
本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: #!/usr/bin ...
- kuangbin专题十六 KMP&&扩展KMP HDU3347 String Problem(最小最大表示法+kmp)
Give you a string with length N, you can generate N strings by left shifts. For example let consider ...
- HDU3374 String Problem —— 最小最大表示法 + 循环节
题目链接:https://vjudge.net/problem/HDU-3374 String Problem Time Limit: 2000/1000 MS (Java/Others) Me ...
随机推荐
- .gitignore文件失效的解决方案
通常在idea中,我们使用git进行项目管理的时候,一些不需要的文件如.idea,.target文件不需要上传至gitlab仓库,这时,就需要在项目中定义一个.gitignore文件,用来标识这些文件 ...
- Storm 系列(四)—— Storm 集群环境搭建
一.集群规划 这里搭建一个 3 节点的 Storm 集群:三台主机上均部署 Supervisor 和 LogViewer 服务.同时为了保证高可用,除了在 hadoop001 上部署主 Nimbus ...
- 实时统计每天pv,uv的sparkStreaming结合redis结果存入mysql供前端展示
最近有个需求,实时统计pv,uv,结果按照date,hour,pv,uv来展示,按天统计,第二天重新统计,当然了实际还需要按照类型字段分类统计pv,uv,比如按照date,hour,pv,uv,typ ...
- 我的MarkDown入门
目录 0.前言 1.软件准备 2.基本语法 2.1斜体&加粗 2.2分级标题 2.3分割线 2.4超链接 2.5列表 2.6引用 2.7插入代码 2.8插入图像 2.9插入表格 2.10目录 ...
- 拒绝一次性买卖:MyBatis的mapper和repository可重复生成工具
背景 MyBatis的历史可谓久远了,码农们也在用着各式各样的代码生成工具.然而这些工具大部分都有一个缺点,那就是只能一次性生成文件.如果我们期间在生成的文件里做了修改,再次生成时,很多工具会覆盖我们 ...
- FreeSql (三十)读写分离
FreeSql 支持数据库读写分离,本功能是客户端的读写分离行为,数据库服务器该怎么配置仍然那样配置,不受本功能影响,为了方便描术后面讲到的[读写分离]都是指客户端的功能支持. 各种数据库的读写方案不 ...
- 【干货推荐】Android开发该学习哪些东西?
开篇: 本人也是众多Android开发道路上行走的一员,听了不少大神的知乎live,自己也看了不少书,也和不少前辈交流过,所以在这里分享一下Android开发应该学习的书籍以及知识,当然,也包括一些方 ...
- Mybatis值ResultMap的使用详解
Mybatis的定义 MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyBatis ...
- net core WebApi——缓存神器Redis
目录 前言 Redis 使用 RedisUtil 测试 小结 @ 前言 中秋过完不知不觉都已经快两周没动这个工程了,最近业务需要总算开始搞后台云服务了,果断直接net core搞起,在做的中间遇到了不 ...
- Eclipse通过SVN导入项目遇到的问题记录
问题一.把子项目导入为project 原因:一个大的文件夹,里面有各个小项目,需要把自己添加需求的醒目导入为Maven Project 1.右键选 Import as project 2.右键 -&g ...