机器学习 - 正则化L1 L2
L1 L2 Regularization

表示方式:


$L_2\text{ regularization term} = ||\boldsymbol w||_2^2 = {w_1^2 + w_2^2 + ... + w_n^2}$
执行 L2 正则化对模型具有以下影响
- 使权重值接近于 0(但并非正好为 0)
- 使权重的平均值接近于 0,且呈正态(钟形曲线或高斯曲线)分布。
模型开发者通过以下方式来调整正则化项的整体影响:用正则化项的值乘以名为 lambda(又称为正则化率)的标量。也就是说,模型开发者会执行以下运算:
$\text{minimize(Loss(Data|Model)} + \lambda \text{ complexity(Model))}$
增加 lambda 值将增强正则化效果。 例如,lambda 值较高的权重直方图可能会如图 2 所示。
降低 lambda 的值往往会得出比较平缓的直方图,如图 3 所示。
参考:
https://developers.google.com/machine-learning/crash-course/regularization-for-simplicity/lambda?hl=zh-cn
https://zhuanlan.zhihu.com/p/25707761
机器学习 - 正则化L1 L2的更多相关文章
- 机器学习中L1,L2正则化项
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...
- 正则化 L1 L2
机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和 ...
- 机器学习之正则化【L1 & L2】
前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对 ...
- 【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- L1正则化和L2正则化
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...
- L1,L2范数和正则化 到lasso ridge regression
一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数 表示向量xx中非零元素的个数. L1范数 表示向量中非零元素的绝对值之和. L2范数 表 ...
- L0,L1,L2正则化浅析
在机器学习的概念中,我们经常听到L0,L1,L2正则化,本文对这几种正则化做简单总结. 1.概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数 ...
- L1正则化与L2正则化的理解
1. 为什么要使用正则化 我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据: 可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...
随机推荐
- 【原】Java学习笔记009 - 阶段测试
package cn.temptation; public class Sample01 { public static void main(String[] args) { // 1.需求:打印如下 ...
- 我认知的javascript之函数调用
今天刚好周六没事,又由于工作的原因导致早上醒来就睡不着,无聊之下,就想到了 js 的function调用问题.当然,网上也是对javascript的一些事情说得很透了,但我觉得还是有必要把自己的想法说 ...
- 【PAT】B1013 数素数
用埃氏筛筛出素数表(节约时间) 素数的筛选范围不能小了,一定要够大 #include<stdio.h> int main(){ int N,M;scanf("%d %d" ...
- centos7防火墙导致不能访问的
CentOS 7.0默认使用的是firewall作为防火墙,使用iptables必须重新设置一下 1.直接关闭防火墙 systemctl stop firewalld.service #停止firew ...
- Win10 Service'MongoDB Server' failed to start. Verify that you have sufficient privileges to start system services【简记】
最近工作中有需要用到 MongoDB数据库,以前用的3.*的版本,这次用的是较新4.0.6的版本,然后去官网下载安装. 安装到一半,就弹出如下提示,说是"MongoDB Server&quo ...
- SQLServer之索引简介
索引设计基础知识 索引是与表或视图关联的磁盘上结构,可以加快从表或视图中检索行的速度. 索引包含由表或视图中的一列或多列生成的键. 这些键存储在一个结构(B 树)中,使 SQL Server 可以快速 ...
- 做为一个Python程序员的基本素养
今天在学习的过程中,明白了一些不是Python标准所必须要做的事情,二是做为一个合格的Python程序员应该所遵从的一些规范 分享给大家,有不足的地方请大家指正,此下是我学习的一点心得: 1.在给变量 ...
- JavaScript对象类型之创建对象
引言 JavaScript中,可以通过对象直接量,关键字new(ECMAScript 5中的)Object.create(),函数来创建对象. 对象直接量 JavaScript中使用对象直接量来创建对 ...
- springMVC DispatcherServlet类关系图
- 基于SVM的鸢尾花数据集分类实现[使用Matlab]
iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson’s Iris data set.iris包含150个样本,对应数据集的每行数据.每行数据包含每个样本的四个特征和样本的类别信息 ...