Alluxio 1.8.1

官方:http://www.alluxio.org/

一 简介

Open Source Memory Speed Virtual Distributed Storage
Alluxio, formerly Tachyon, enables any application to interact with any data from any storage system at memory speed.

alluxio是一个开源的拥有内存访问速度的虚拟分布式存储;之前叫Tachyon,可以使应用像访问内存数据一样访问任何存储系统中的数据。

1 优势

Storage Unification and Abstraction

Alluxio unifies data access to different systems, and seamlessly bridges computation frameworks and underlying storage.

Remote Data Acceleration

Decouple compute and storage without any loss in performance.

将计算和存储分离,并且不会损失性能;

2 部署结构

Alluxio can be divided into three components: masters, workers, and clients. A typical setup consists of a single leading master, multiple standby masters, and multiple workers. The master and worker processes constitute the Alluxio servers, which are the components a system administrator would maintain. The clients are used to communicate with the Alluxio servers by applications such as Spark or MapReduce jobs, Alluxio command-line, or the FUSE layer.

alluxio由master、worker组成,其中master如果有多个,只有一个是leading master,其他为standby master;

3 角色

Master

The Alluxio master service can be deployed as one leading master and several standby masters for fault tolerance. When the leading master goes down, a standby master is elected to become the new leading master.

1)Leading Master

Only one master process can be the leading master in an Alluxio cluster. The leading master is responsible for managing the global metadata of the system. This includes file system metadata (e.g. the file system inode tree), block metadata (e.g. block locations), and worker capacity metadata (free and used space). Alluxio clients interact with the leading master to read or modify this metadata. All workers periodically send heartbeat information to the leading master to maintain their participation in the cluster. The leading master does not initiate communication with other components; it only responds to requests via RPC services. The leading master records all file system transactions to a distributed persistent storage to allow for recovery of master state information; the set of records is referred to as the journal.

alluxio中只有一个leading master,leading master负责管理所有的元数据,包括文件系统元数据、block元数据和worker元数据;worker会定期向leading master发送心跳;leading master会记录所有的文件操作到日志中;

2)Standby Masters

Standby masters read journals written by the leading master to keep their own copies of the master state up-to-date. They also write journal checkpoints for faster recovery in the future. They do not process any requests from other Alluxio components.

standby master会及时同步读取leader master的日志;

Worker

Alluxio workers are responsible for managing user-configurable local resources allocated to Alluxio (e.g. memory, SSDs, HDDs). Alluxio workers store data as blocks and serve client requests that read or write data by reading or creating new blocks within their local resources. Workers are only responsible for managing blocks; the actual mapping from files to blocks is only stored by the master.

worker负责管理资源,比如内存、ssd等;worker负责将数据存储为block同时响应client的读写请求;实际的file和block的映射关系保存在master中;

Because RAM usually offers limited capacity, blocks in a worker can be evicted when space is full. Workers employ eviction policies to decide which data to keep in the Alluxio space.

Client

The Alluxio client provides users a gateway to interact with the Alluxio servers. It initiates communication with the leading master to carry out metadata operations and with workers to read and write data that is stored in Alluxio.

client先向leading master请求元数据信息,然后向worker发送读写请求;

二 安装

1 下载

$ wget http://downloads.alluxio.org/downloads/files//1.8.1/alluxio-1.8.1-hadoop-2.6-bin.tar.gz
$ tar xvf alluxio-1.8.1-hadoop-2.6-bin.tar.gz
$ cd alluxio-1.8.1-hadoop-2.6

2 配置本机ssh登录

即可以 ssh localhost
详见:https://www.cnblogs.com/barneywill/p/10271679.html

3 配置

$ cp conf/alluxio-site.properties.template conf/alluxio-site.properties
$ vi conf/alluxio-site.properties
alluxio.master.hostname=localhost

4 初始化

$ ./bin/alluxio validateEnv local
$ ./bin/alluxio format

5 启动

$ ./bin/alluxio-start.sh local SudoMount

如果报错:

Formatting RamFS: /mnt/ramdisk (44849277610)
ERROR: mkdir /mnt/ramdisk failed

需要添加sudo权限

# visudo -f /etc/sudoers
$user ALL=(ALL) NOPASSWD: /bin/mount * /mnt/ramdisk, /bin/umount * /mnt/ramdisk, /bin/mkdir * /mnt/ramdisk, /bin/chmod * /mnt/ramdisk

三 使用

1 命令行

文件系统操作

$ ./bin/alluxio fs
$ ./bin/alluxio fs ls /
$ ./bin/alluxio fs copyFromLocal LICENSE /LICENSE
$ ./bin/alluxio fs cat /LICENSE

看起来和hdfs命令很像

admin操作

$ bin/alluxio fsadmin report

Alluxio cluster summary:

Master Address: localhost/127.0.0.1:19998

Web Port: 19999

Rpc Port: 19998

Started: 01-24-2019 10:28:59:433

Uptime: 0 day(s), 1 hour(s), 24 minute(s), and 42 second(s)

Version: 1.8.1

Safe Mode: false

Zookeeper Enabled: false

Live Workers: 1

Lost Workers: 0

Total Capacity: 10.00GB

Tier: MEM  Size: 10.00GB

Used Capacity: 9.36GB

Tier: MEM  Size: 9.36GB

Free Capacity: 651.55MB

查看统计信息

$ curl http://$master:19999/metrics/json

2 UFS(Under File Storage)

UFS=LocalFileSystem

1 默认配置

$ cat conf/alluxio-site.properties
alluxio.underfs.address=${alluxio.work.dir}/underFSStorage

2 命令示例

$ ls ./underFSStorage/
$ ./bin/alluxio fs persist /LICENSE
$ ls ./underFSStorage
LICENSE

With the default configuration, Alluxio uses the local file system as its under file storage (UFS). The default path for the UFS is ./underFSStorage.

Alluxio is currently writing data only into Alluxio space, not to the UFS.Configure Alluxio to persist the file from Alluxio space to the UFS by using the persist command.

Alluxio默认用的是本地文件系统作为UFS,只有执行persist命令之后,文件才会持久化到UFS中;

UFS=HDFS

1 配置

$ cat conf/alluxio-site.properties
alluxio.underfs.address=hdfs://<NAMENODE>:<PORT>/alluxio/data

如果你想对hdfs上全部数据进行加速并且路径不变,可以配置为hdfs的根目录

2 配置hadoop

1)链接

$ ln -s $HADOOP_CONF_DIR/core-site.xml conf/core-site.xml
$ ln -s $HADOOP_CONF_DIR/hdfs-site.xml conf/hdfs-site.xml

Copy or make symbolic links from hdfs-site.xml and core-site.xml from your Hadoop installation into ${ALLUXIO_HOME}/conf

2)直接配置路径

alluxio.underfs.hdfs.configuration=/path/to/hdfs/conf/core-site.xml:/path/to/hdfs/conf/hdfs-site.xml

3 命令

$ bin/alluxio fs ls /

可以看到hdfs上所有的目录了

4 文件映射

这时可以通过访问

alluxio://$alluxio_server:19998/test.log

来访问底层存储

hdfs://$namenode_server/alluxio/data/test.log

注意:这里需要指定$alluxio_server和端口,存在单点问题,后续ha方式部署之后可以解决这个问题。

3 Spark访问

1 准备:(二选一)

1)配置

spark.driver.extraClassPath /<PATH_TO_ALLUXIO>/client/alluxio-1.8.1-client.jar
spark.executor.extraClassPath /<PATH_TO_ALLUXIO>/client/alluxio-1.8.1-client.jar

This Alluxio client jar file can be found at /<PATH_TO_ALLUXIO>/client/alluxio-1.8.1-client.jar

2)拷贝jar

$ cp client/alluxio-1.8.1-client.jar $SPARK_HOME/jars/

2 访问

$ spark-shell
scala> val s = sc.textFile("alluxio://localhost:19998/derby.log")
s: org.apache.spark.rdd.RDD[String] = alluxio://localhost:19998/derby.log MapPartitionsRDD[1] at textFile at <console>:24

scala> s.foreach(println)
----------------------------------------------------------------
Thu Jan 10 11:05:45 CST 2019:

参考:http://www.alluxio.org/docs/1.8/en/compute/Spark.html

4 hive访问

拷贝jar

$ cp client/alluxio-1.8.1-client.jar $HIVE_HOME/lib/

$ cp client/alluxio-1.8.1-client.jar $HADOOP_HOME/share/hadoop/common/lib/

重启metastore和hiveserver2

5 部署方式

1 集群ha部署

即多worker+多master+zookeeper

1 配置集群服务器间ssh可达

同上

2 配置

$ cat conf/alluxio-site.properties
#alluxio.master.hostname=<MASTER_HOSTNAME>
alluxio.zookeeper.enabled=true
alluxio.zookeeper.address=<ZOOKEEPER_ADDRESS>
alluxio.master.journal.folder=hdfs://$namenode_server/alluxio/journal/
alluxio.worker.memory.size=20GB

将配置同步到集群所有服务器

3 配置masters和workers

$ conf/masters
$master1
$master2

$ conf/workers
$worker1
$worker2
$worker3

4 启动

$ ./bin/alluxio-start.sh all SudoMount

5 访问方式

alluxio://zkHost1:2181;zkHost2:2181;zkHost3:2181/path

如果client启动时增加环境变量

-Dalluxio.zookeeper.address=zkHost1:2181,zkHost2:2181,zkHost3:2181 -Dalluxio.zookeeper.enabled=true

则可以直接这样访问

alluxio:///path

6 与hdfs互通

拷贝jar

$ cp client/alluxio-1.8.1-client.jar $HADOOP_HOME/share/hadoop/common/lib/

将以下配置添加到 $HADOOP_CONF_DIR/core-site.xml

alluxio.zookeeper.enabled
alluxio.zookeeper.address

<property>

<name>fs.alluxio.impl</name>

<value>alluxio.hadoop.FileSystem</value>

</property>

则可以通过hdfs客户端访问alluxio

$ hadoop fs -ls alluxio:///directory

参考:http://www.alluxio.org/docs/1.8/en/deploy/Running-Alluxio-On-a-Cluster.html

2 Alluxio on Yarn部署

Alluxio还有很多种部署方式,其中一种是Alluxio on Yarn,对于类似Spark on Yarn的用户来说,非常容易使用Alluxio来加速Spark。

详见:

http://www.alluxio.org/docs/1.8/en/deploy/Running-Alluxio-On-Yarn.html

【原创】大数据基础之Alluxio(1)简介、安装、使用的更多相关文章

  1. 大数据基础环境--jdk1.8环境安装部署

    1.环境说明 1.1.机器配置说明 本次集群环境为三台linux系统机器,具体信息如下: 主机名称 IP地址 操作系统 hadoop1 10.0.0.20 CentOS Linux release 7 ...

  2. 【原创】大数据基础之Zookeeper(2)源代码解析

    核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...

  3. CentOS6安装各种大数据软件 第八章:Hive安装和配置

    相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...

  4. 大数据应用日志采集之Scribe 安装配置指南

    大数据应用日志采集之Scribe 安装配置指南 大数据应用日志采集之Scribe 安装配置指南 1.概述 Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用.它 ...

  5. 【原创】大数据基础之Impala(1)简介、安装、使用

    impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic datab ...

  6. 【原创】大数据基础之Benchmark(2)TPC-DS

    tpc 官方:http://www.tpc.org/ 一 简介 The TPC is a non-profit corporation founded to define transaction pr ...

  7. 【原创】大数据基础之词频统计Word Count

    对文件进行词频统计,是一个大数据领域的hello word级别的应用,来看下实现有多简单: 1 Linux单机处理 egrep -o "\b[[:alpha:]]+\b" test ...

  8. 大数据基础知识:分布式计算、服务器集群[zz]

    大数据中的数据量非常巨大,达到了PB级别.而且这庞大的数据之中,不仅仅包括结构化数据(如数字.符号等数据),还包括非结构化数据(如文本.图像.声音.视频等数据).这使得大数据的存储,管理和处理很难利用 ...

  9. 大数据基础知识问答----spark篇,大数据生态圈

    Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...

随机推荐

  1. 基于HTML5 的互联网+地铁行业

    前言 近几年,互联网与交通运输的融合,改变了交易模式,影响着运输组织和经营方式,改变了运输主体的市场结构.模糊了运营与非营运的界限,也更好的实现了交通资源的集约共享,同时使得更多依靠外力和企业推动交通 ...

  2. Windows 支持 OpenSSH 了!

    从 Win10 1809 和 Windows Server 2019 开始 Windows 开始支持 OpenSSH Server.本文介绍一下其基本的概念和配置方法,本文演示用的环境为 Win10 ...

  3. CentOS7.5脱机安装SQL Server 2017(NEW)

    发现搜到的都是在线下载安装的,都是只安装了mssql-server服务,没有mssql-server-agent服务.还以为linux下mssql没有agent服务呢.一番测试发现可以脱机安装,但是能 ...

  4. BS架构和CS架构的区别

    C/S架构的优缺点: *优点: 1.客户端因为是独立设计,所以可以实现个性化 2.因为客户端是需要进行安装的,可以不需要重复安装和加载 3.因为客户端是独立开发的,所以有能力对客户端进行安全设计 4. ...

  5. set 数据类型

    list => 允许重复的集合,可修改 tuple => 允许重复的集合,不可修改 dict set => 不允许重复的集合 .set 不允许重复的列表 1.创建 s = set() ...

  6. 修改host,上github

    操作如下: 1.http://ping.chinaz.com/ 搜索github.com 海外ip,其实能找到的就两个;然后再搜gist.github.com 海外ip,也是两个. 192.30.25 ...

  7. 自己实现ArrayList与LinkedList类

    ArrayList与LinkedList的底层实现 ArrayList内部由数组实现,LinkedList内部由链表实现. 自己动手实现ArrayList与LinkedList中一些常用方法 Arra ...

  8. P2495 [SDOI2011]消耗战 lca倍增+虚树+树形dp

    题目:给出n个点的树  q次询问  问切断 k个点(不和1号点联通)的最小代价是多少 思路:树形dp  sum[i]表示切断i的子树中需要切断的点的最小代价是多少 mi[i]表示1--i中的最小边权 ...

  9. Numpy系列(六)- 形状操作

    Numpy 有一个强大之处在于可以很方便的修改生成的N维数组的形状. 更改数组形状 数组具有由沿着每个轴的元素数量给出的形状: a = np.floor(10*np.random.random((3, ...

  10. DirectX11--深入理解HLSL常量缓冲区打包规则

    HLSL常量缓冲区打包规则 DirectX11 With Windows SDK完整目录 欢迎加入QQ群: 727623616 可以一起探讨DX11,以及有什么问题也可以在这里汇报. 尽管打包规则并不 ...