题目链接


Solution

矩阵优化 \(dp\).

题中给出的式子的意思就是:

求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数.

考虑朴素 \(dp\) ,定义状态 \(f[i][j]\) 代表前 \(i\) 个物品选择 \(mod~k\) 为 \(j\) 的方案数.

那么转移方程也很简单 :

\[f[i][j]_{j\in[1,i)}=f[i-1][j]+f[i-1][(j-1+k)mod~k]
\]

但是很显然这样是 \(O(n^2k)\) .

考虑优化,发现对于每一项状态,仅与 \(i-1\) 的状态有关.

如此我们可以考虑构建一个 \(k*k\) 的转移矩阵,即:

\[ \begin{matrix}
mod~k= &0 &1 &2 &...&k-1\\
&1 & 0 &0&...& 1 \\
&1 &1&0 &... &0 \\
&0 & 1 &1 &... & 0\end{matrix}
\tag{1}
\]

然后初始矩阵即为一个 \(k*1\) 的矩阵.

然后就可以矩阵快速幂了.

Code

#include<bits/stdc++.h>
#define in(x) x=read()
#define ll long long
using namespace std; int read()
{
char ch=getchar(); int w=0;
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9'){w=w*10+ch-'0';ch=getchar();}
return w;
} ll n,mod,k,r;
struct Matrix{
ll a[51][51];
}; Matrix X(Matrix s,Matrix e)
{
Matrix c;
memset(c.a,0,sizeof(c.a));
for(int i=0;i<k;i++)
for(int j=0;j<k;j++)
for(int l=0;l<k;l++)
{
c.a[i][j]+=(s.a[i][l]*e.a[l][j])%mod;
c.a[i][j]%=mod;
}
return c;
} Matrix quick_pow(Matrix s,ll ks)
{
if(ks==1)return s;
Matrix k=s; ks--;
while(ks>0)
{
if(ks%2==1)k=X(k,s);
ks/=2;
s=X(s,s);
}
return k;
} Matrix x(Matrix s,Matrix e)
{
Matrix c;
memset(c.a,0,sizeof(c.a));
for(int i=0;i<1;i++)
for(int j=0;j<k;j++)
for(int l=0;l<k;l++)
{
c.a[j][i]+=(s.a[j][l]*e.a[l][i])%mod;
c.a[j][i]%=mod;
}
return c;
} int main()
{
in(n),in(mod),in(k),in(r);
Matrix P,f;
memset(P.a,0,sizeof(P.a));
memset(f.a,0,sizeof(f.a));
for(ll i=0;i<k;i++)
{
if(i==0)
P.a[i][0]++,P.a[i][k-1]++;
else
P.a[i][i-1]++,P.a[i][i]++;
}
P=quick_pow(P,n*k);
f.a[0][0]=1;
f=x(P,f);
cout<<f.a[r%k][0]%mod<<endl;
}

[六省联考2017]组合数问题 (矩阵优化$dp$)的更多相关文章

  1. P3746 [六省联考2017]组合数问题

    P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{ ...

  2. [BZOJ4870][六省联考2017]组合数问题(组合数动规)

    4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 748  Solved: 398[Submit][Statu ...

  3. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  4. bzoj千题计划263:bzoj4870: [六省联考2017]组合数问题

    http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...

  5. 洛谷P3746 [六省联考2017]组合数问题

    题目描述 组合数 C_n^mCnm​ 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种 ...

  6. P3746 【[六省联考2017]组合数问题】

    题目是要我们求出如下柿子: \[\sum_{i=0}^{n}C_{nk}^{ik+r}\] 考虑k和r非常小,我们能不能从这里切入呢? 如果你注意到,所有组合数上方的数\(\%k==r\),那么是不是 ...

  7. 洛谷$P$3746 [六省联考2017]组合数问题 $dp$+矩乘+组合数学

    正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下 ...

  8. BZOJ4870 [六省联考2017] 组合数问题 【快速幂】

    题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...

  9. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

随机推荐

  1. Bootstrap 折叠(collapse)插件面板

    折叠插件(collapse)可以很容易地让页面区域折叠起来, 无论您是用它来创建折叠导航还是内容面板,它都允许很多内容选项. 您可以使用折叠插件 1.创建可折叠的分组或折叠的面板 <!DOCTY ...

  2. 【luogu题解】P1546 最短网络 Agri-Net

    题目 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场.为了用最小的消费,他想铺设最短的光纤去连接所有的农场. 你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并 ...

  3. UOJ#386. 【UNR #3】鸽子固定器(链表)

    题意 题目链接 为了固定S**p*鸽鸽,whx和zzt来到鸽具商店选购鸽子固定器. 鸽具商店有 nn 个不同大小的固定器,现在可以选择至多 mm 个来固定S**p*鸽鸽.每个固定器有大小 sisi 和 ...

  4. String&StringBuffer&StringBuilder区别

    String  String类是final类故不可以继承,也就意味着String引用的字符串内容是不能被修改.String有两种实例化方式:    (1)直接赋值(例中,String str = &q ...

  5. 关于springboot配置文件的另类读取方法

    一.背景故事   前阵子我接手了公司另外一个同事手里的项目,项目是用的springboot 写的,但是比较坑的就是这个项目写的有点不伦不类.虽然是用的springboot,但由于他是拿了一堆代码拼凑起 ...

  6. php 数据脱敏显示

    /** * 数据脱敏 * @param $string 需要脱敏值 * @param int $start 开始 * @param int $length 结束 * @param string $re ...

  7. SourceTree 跳过登录注册,直接使用

    SourceTree下载安装后,运行程序会要求你登录或注册账号才能使用, 然而登录或注册基本都收不到服务器的响应 (在国外嘛,安全起见),于是卡在此处无法使用了. 下面就来介绍一下跳过这尴尬环节的方法 ...

  8. linux命令学习-2

    1. 对于已经在前台执行的命令,可以重新放到后台执行,首先按ctrl+z暂停已经运行的进程,然后使用jobs查看进程编号n:2. bg命令将停止的作业放到后台运行 bg %n3. kill -9 XX ...

  9. oracle redo 重做日志文件

    以下易容翻译自oracle dba官方文档,不足之处还望指出. 管理重做日志文件 学习目标:1.解释重做日志文件的目的2.描述重做日志文件的结构3.学会控制日志切换与检查点4.多元化管理重做日志文件5 ...

  10. 动态规划:HDU1712-ACboy needs your help(分组背包问题)

    ACboy needs your help Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Othe ...