[六省联考2017]组合数问题 (矩阵优化$dp$)
题目链接
Solution
矩阵优化 \(dp\).
题中给出的式子的意思就是:
求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数.
考虑朴素 \(dp\) ,定义状态 \(f[i][j]\) 代表前 \(i\) 个物品选择 \(mod~k\) 为 \(j\) 的方案数.
那么转移方程也很简单 :
\]
但是很显然这样是 \(O(n^2k)\) .
考虑优化,发现对于每一项状态,仅与 \(i-1\) 的状态有关.
如此我们可以考虑构建一个 \(k*k\) 的转移矩阵,即:
mod~k= &0 &1 &2 &...&k-1\\
&1 & 0 &0&...& 1 \\
&1 &1&0 &... &0 \\
&0 & 1 &1 &... & 0\end{matrix}
\tag{1}
\]
然后初始矩阵即为一个 \(k*1\) 的矩阵.
然后就可以矩阵快速幂了.
Code
#include<bits/stdc++.h>
#define in(x) x=read()
#define ll long long
using namespace std;
int read()
{
char ch=getchar(); int w=0;
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9'){w=w*10+ch-'0';ch=getchar();}
return w;
}
ll n,mod,k,r;
struct Matrix{
ll a[51][51];
};
Matrix X(Matrix s,Matrix e)
{
Matrix c;
memset(c.a,0,sizeof(c.a));
for(int i=0;i<k;i++)
for(int j=0;j<k;j++)
for(int l=0;l<k;l++)
{
c.a[i][j]+=(s.a[i][l]*e.a[l][j])%mod;
c.a[i][j]%=mod;
}
return c;
}
Matrix quick_pow(Matrix s,ll ks)
{
if(ks==1)return s;
Matrix k=s; ks--;
while(ks>0)
{
if(ks%2==1)k=X(k,s);
ks/=2;
s=X(s,s);
}
return k;
}
Matrix x(Matrix s,Matrix e)
{
Matrix c;
memset(c.a,0,sizeof(c.a));
for(int i=0;i<1;i++)
for(int j=0;j<k;j++)
for(int l=0;l<k;l++)
{
c.a[j][i]+=(s.a[j][l]*e.a[l][i])%mod;
c.a[j][i]%=mod;
}
return c;
}
int main()
{
in(n),in(mod),in(k),in(r);
Matrix P,f;
memset(P.a,0,sizeof(P.a));
memset(f.a,0,sizeof(f.a));
for(ll i=0;i<k;i++)
{
if(i==0)
P.a[i][0]++,P.a[i][k-1]++;
else
P.a[i][i-1]++,P.a[i][i]++;
}
P=quick_pow(P,n*k);
f.a[0][0]=1;
f=x(P,f);
cout<<f.a[r%k][0]%mod<<endl;
}
[六省联考2017]组合数问题 (矩阵优化$dp$)的更多相关文章
- P3746 [六省联考2017]组合数问题
P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{ ...
- [BZOJ4870][六省联考2017]组合数问题(组合数动规)
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 748 Solved: 398[Submit][Statu ...
- [BZOJ4872][六省联考2017]分手是祝愿(期望DP)
4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 516 Solved: 342[Submit][Statu ...
- bzoj千题计划263:bzoj4870: [六省联考2017]组合数问题
http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...
- 洛谷P3746 [六省联考2017]组合数问题
题目描述 组合数 C_n^mCnm 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种 ...
- P3746 【[六省联考2017]组合数问题】
题目是要我们求出如下柿子: \[\sum_{i=0}^{n}C_{nk}^{ik+r}\] 考虑k和r非常小,我们能不能从这里切入呢? 如果你注意到,所有组合数上方的数\(\%k==r\),那么是不是 ...
- 洛谷$P$3746 [六省联考2017]组合数问题 $dp$+矩乘+组合数学
正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下 ...
- BZOJ4870 [六省联考2017] 组合数问题 【快速幂】
题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...
- [六省联考2017]分手是祝愿 期望DP
表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...
随机推荐
- 记Tea使用中遇到的问题及解决过程
学习Markdown时,在小众软件看到一个叫Tea的软件.UI设计是简约风格:"所见即所得"的Markdown:支持插件等原因让我选择去尝试这杯"茶". 最近一 ...
- iOS 控制section不悬停 --- iOS开发系列 ---项目中成长的知识八
一般情况下,tableview中的section是会默认不随着tableview的滚动而滚动的,而是会等到属于这个section的cell滑完过后,然后往上顶(不知道大家能不能听懂=_=!) 有些时候 ...
- Spring Cloud学习介绍
最近在学spring cloud, 整理了下 简单知识要求: 1.要了解springboot 2.了解分布式架构 3.了解微服务 4.了解springcloud是做什么的 带着这些,初学者 就至少有个 ...
- 二、Shell 变量
Shell 变量 定义变量时,变量名不加美元符号($,PHP语言中变量需要),如: your_name="runoob.com" 注意,变量名和等号之间不能有空格,这可能和你熟悉的 ...
- rpc - 接口返回数据结构的设计
方案一: 系统级状态 .业务级别的状态同用 code要特殊声明保留状态,如若不声明保留状态,一旦业务开发人员用到了系统级的状态,就有必要侵入的改动业务返回的code(新code与业务欲返回的code ...
- Liunx环境--Node部署记录
1.看看环境里有没有装Node which node 2.找个目录安装 (1)/usr/local/node/download 执行下载 wget https://nodejs.org/dist/v8 ...
- python3 练习题100例 (十四)
今天逛贴吧,看到有人求助,做了一下.请大家指正! #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'Fan Lijun' imp ...
- Python登录人人网并抓取新鲜事
from sgmllib import SGMLParser import sys,urllib2,urllib,cookielib class spider(SGMLParser): def ...
- Android Shader渲染器:BitmapShader图片渲染
public class BitmapShader extends Shader BitmapShader, Shader家族的 专门处理图片渲染的 构造方法: public BitmapShade ...
- IOS开发学习笔记010-面向对象的三大特性
面向对象的三大特性 1.封装 2.继承 3.多态 一.封装 将类内部的属性保护起来,在外部不能直接访问,那么如果需要访问怎么办呢? OC提供了set方法来对成员变量进行访问 set方法 1.作用:提供 ...