符号表示:

$W$:表示当前层Feature map的大小。

$K$:表示kernel的大小。

$S$:表示Stride的大小。

具体来讲:

整体说来,和下一层Feature map大小最为密切的就是Stride了,因为按照CNN的移动方式,是根据Stride来进行移动的,因此除了最后一个的长度为K之外,前面所有的长度全部为S。当然K=S仅仅是一种特殊情况而已。

正如这幅图片所示(有点丑,将就着看吧),为了直观,故意将重叠的部分给忽略掉,这样可以更清楚的明白到底是怎样一回事。

因此最后的公式就是这样子的:

下一层Feature map的大小 $=\frac{W-K}{S}+1$

如果需要加入padding,那么将padding后的整体看作是W这样就可以了,就这样吧。

CNN中下一层Feature map大小计算的更多相关文章

  1. TensorFlow与caffe中卷积层feature map大小计算

    刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同 ...

  2. CNN 卷积层输入Map大小计算

    对于输出的size计算: out_height=((input_height - filter_height + padding_top+padding_bottom)/stride_height ) ...

  3. CNN中的feature map

    个人学习CNN的一些笔记,比较基础,整合了其他博客的内容 feature map的理解在cnn的每个卷积层,数据都是以三维形式存在的.你可以把它看成许多个二维图片叠在一起(像豆腐皮竖直的贴成豆腐块一样 ...

  4. feature map 大小以及反卷积的理解

    (1)边长的计算公式是:  output_h =(originalSize_h+padding*2-kernelSize_h)/stride +1 输入图片大小为200×200,依次经过一层卷积(ke ...

  5. 在CNN网络中roi从原图映射到feature map中的计算方法

    在使用fast rcnn以及faster rcnn做检测任务的时候,涉及到从图像的roi区域到feature map中roi的映射,然后再进行roi_pooling之类的操作.比如图像的大小是(600 ...

  6. capsule network——CNN仅仅考虑了“有没有”的问题,没有考虑feature map的结构关系。这个结构关系包括位置,角度等。Capsule layer的输出也跟feature map的max-pooling输出不同,capsule layer的输出是一个向量,这个向量包含了位置,大小,角度等信息,这是feature map仅能输出一个值所不具备的;训练比较慢

    capsule network--<Dynamic Routing Between Capsules> from:https://zhuanlan.zhihu.com/p/31491520 ...

  7. CNN中feature map、卷积核、卷积核的个数、filter、channel的概念解释

    CNN中feature map.卷积核.卷积核的个数.filter.channel的概念解释 参考链接: https://blog.csdn.net/xys430381_1/article/detai ...

  8. Convolutional Neural Networks(4):Feature map size,Padding and Stride

    在CNN(1)中,我们用到下图来说明卷积之后feature maps尺寸和深度的变化.这一节中,我们讨论feature map size, padding and stride. 首先,在Layer1 ...

  9. 使用Compute Shader加速Irradiance Environment Map的计算

    Irradiance Environment Map基本原理 Irradiance Environment Map(也叫Irradiance Map或Diffuse Environment Map), ...

随机推荐

  1. 【spring boot】13.在spring boot下使用多线程

    使用场景: 方法处理到某一步,需要将信息交给另一个线程去处理!! =================================================================== ...

  2. iOS -- SKPhysicsWorld类

    SKPhysicsWorld类 继承自 NSObject 符合 NSCodingNSObject(NSObject) 框架  /System/Library/Frameworks/SpriteKit. ...

  3. Android开发——内存优化 图片处理

    8.  用缓存避免内存泄漏 很常见的一个例子就是图片的三级缓存结构,分别为网络缓存,本地缓存以及内存缓存.在内存缓存逻辑类中,通常会定义这样的集合类. private HashMap<Strin ...

  4. android页面间传递对象

    android传递对象有两种方式: 一种是Serializable和Parcelable 对于第一种方式: import java.io.Serializable; public class Shop ...

  5. C#中??和?分别是什么意思? 在ASP.NET开发中一些单词的标准缩写 C#SESSION丢失问题的解决办法 在C#中INTERFACE与ABSTRACT CLASS的区别 SQL命令语句小技巧 JQUERY判断CHECKBOX是否选中三种方法 JS中!=、==、!==、===的用法和区别 在对象比较中,对象相等和对象一致分别指的是什么?

    C#中??和?分别是什么意思? 在C#中??和?分别是什么意思? 1. 可空类型修饰符(?):引用类型可以使用空引用表示一个不存在的值,而值类型通常不能表示为空.例如:string str=null; ...

  6. 在eclipse中查找指定文件 [多种方法]

    在eclipse中查找指定文件   1.ctrl+h打开搜索界面 File Search: containing text填*,File name patterns填写hello.*,可以找到hell ...

  7. MyBatis学习(二):与Spring整合(非注解方式配置MyBatis)

    搭建SpringMVC的-->传送门<-- 一.环境搭建: 目录结构: 引用的JAR包: 如果是Maven搭建的话,pom.xml的配置如下: <?xml version=" ...

  8. 【机器学习算法-python实现】PCA 主成分分析、降维

    1.背景         PCA(Principal Component Analysis),PAC的作用主要是减少数据集的维度,然后挑选出基本的特征.         PCA的主要思想是移动坐标轴, ...

  9. 安装protobuf可能遇到的问题

    下载protobuf-2.3.0:    http://protobuf.googlecode.com/files/protobuf-2.3.0.zip http://code.google.com/ ...

  10. iOS UI13_数据解析XML_,JSON

    - (IBAction)parserButton:(id)sender { parserXML *parser =[[parserXML alloc] init]; [parser startPars ...