扩展欧几里得算法(exGCD)学习笔记
@(学习笔记)[扩展欧几里得]
本以为自己学过一次的知识不会那么容易忘记, 但事实证明, 两个星期后的我就已经不会做扩展欧几里得了...所以还是写一下学习笔记吧
问题概述
求解: \[ax + by = (a, b)\]
Hint: \((a, b)\)表示\(gcd(a, b)\)
分析解决
根据欧几里得算法(辗转相除法), \[(a, b) = (b, a \% b)\]
所以有\[ax + by = (a, b) = (b, a \% b) = bx' + (a \% b)y'\]
故我们递归计算\[bx' + (a \% b)y' = (b, a \% b)\]
又因为\[bx' + (a \% b)y' = bx' + (a - b\lfloor \frac{a}{b} \rfloor)y' = ay' + b(x' - \lfloor \frac{a}{b} \rfloor y)\]
所以我们得到\(x = y', y = x' - \lfloor \frac{a}{b} \rfloor y\).问题解决.
总结: 大致步骤如下:
- 辗转相除, 递归计算
- \(x = y', y = x' - \lfloor \frac{a}{b} \rfloor y'\)得到当前答案
应用
目前见到的还不是很多吧, 比如说这个中国剩余定理就需要用到exGCD了
题面:
http://192.168.102.138/JudgeOnline/problem.php?cid=1165&pid=5
题解:
http://www.cnblogs.com/ZeonfaiHo/p/6722168.html
扩展欧几里得算法(exGCD)学习笔记的更多相关文章
- 浅谈扩展欧几里得算法(exgcd)
在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...
- 扩展欧几里得算法(EXGCD)学习笔记
0.前言 相信大家对于欧几里得算法都已经很熟悉了.再学习数论的过程中,我们会用到扩展欧几里得算法(exgcd),大家一定也了解过.这是本蒟蒻在学习扩展欧几里得算法过程中的思考与探索过程. 1.Bézo ...
- gcd(欧几里得算法)与exgcd(扩展欧几里得算法)
欧几里得算法: 1.定义:gcd的意思是最大公约数,通常用扩展欧几里得算法求 原理:gcd(a, b)=gcd(b, a%b) 2.证明: 令d=gcd(a, b) => a=m*d,b=n ...
- 扩展欧几里得算法详解(exgcd)
一.前言 本博客适合已经学会欧几里得算法的人食用~~~ 二.扩展欧几里得算法 为了更好的理解扩展欧几里得算法,首先你要知道一个叫做贝祖定理的玄学定理: 即如果a.b是整数,那么一定存在整数x.y使得$ ...
- 『扩展欧几里得算法 Extended Euclid』
Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...
- 详解扩展欧几里得算法(扩展GCD)
浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经 ...
- 欧几里得算法与扩展欧几里得算法_C++
先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...
- vijos1009:扩展欧几里得算法
1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...
- exgcd学习笔记
扩展欧几里得算法是当已知a和b时,求得一组x和y使得 首先,根据数论中的相关定理,解一定存在 //留坑待填 之后我们可以推一推式子 将a替换掉 展开括号 提出b,合并 且 设 现在已经将 ...
随机推荐
- go语言结构体作为函数参数,采用的是值传递
经过验证,go语言结构体作为函数参数,采用的是值传递.所以对于大型结构体传参,考虑到值传递的性能损耗,最好能采用指针传递. 验证代码: package main import ( "fmt& ...
- 如何生成带注释的DLL文件
背景: 实际上并不是生成带有注释的DLL文件,而是同时生成一个XML文件,用来显示注释. 为什么要使用DLL文件,在C#编程的过程中,一直在使用DLL文件,如System.dll 方法: 1,创建类库 ...
- ubuntu12.04安装teamviewer
ubuntu 12.04 64位 下载地址:http://downloadap2.teamviewer.com/download/teamviewer_linux_x64.deb 下载之后,选中,右击 ...
- Win磁盘MBR转换为GUID
title: Win磁盘MBR转换为GUID date: 2018-09-02 11:52:32 updated: tags: [windows,记录,折腾] description: keyword ...
- spoj104 HIGH - Highways 矩阵树定理
欲学矩阵树定理必先自宫学习一些行列式的姿势 然后做一道例题 #include <iostream> #include <cstring> #include <cstdio ...
- luogu2951 noip2017 小凯的疑惑
在考场上我们可以打表发现规律是 $ ab-a-b $ .下面给出证明(看的网上的). 若有正数 $ x $ 不能被 $ a $ , $ b $ 组合出,假设 $ a>b $ ,则存在 \[ x= ...
- webdriver高级应用- 精确比较页面截图图片
判断两张图是否完全一致,如果存在任何不一致,会认为图片不匹配,代码如下: #encoding=utf-8 from selenium import webdriver import unittest, ...
- spl_autoload_register和__autoload
1.实例化一个未定义的类时会触发 2.类存在继承关系时,被继承的类没有引入的情况下,会触发 (继承关系的两个类必须在同一个目录下) __autoload 实例化PRINTIT类,'PRINTIT'作 ...
- C# 条件与&&与条件或||的使用总结
CSDN说明: 条件“或”运算符 (||) 执行 bool 操作数的逻辑“或”运算,但仅在必要时才计算第二个操作数. 件“与”运算符 (&&) 执行其 bool 操作数的逻辑“与”运算 ...
- ora-08104 该索引对象 159639 正在被联机建立或重建
SSH远程连接数据库创建索引,网络中断后,删除索引信息报ora-08104 解决方法: 使用ONLINE_INDEX_CLEAN清除索引痕迹 在sys用户下执行 SQL> conn /as sy ...