Law of Iterated Expectations

\(E[Y] = E_X[E[Y |X]].\)

The notation \(E_X[.]\) indicates the expectation over the values of \(X\). Note that \(E[Y|X]\)

is a function of \(X\).

Proof for Law of Iterated Expectations

Proof for discrete random variables:

\(E[E[Y|X]]=\sum\limits_{x} E[Y|X=x]P(X=x)
\\= \sum\limits_{x} \sum\limits_{y} yP(Y=y|X=x)P(X=x)
\\= \sum\limits_{x} \sum\limits_{y} \dfrac{yP(X=x,Y=y)}{P(X=x)}P(X=x)
\\= \sum\limits_{y} \sum\limits_{x} yP(X=x,Y=y)
\\= \sum\limits_{y} yP(Y=y)
\\= E(Y).\)

Proof for continuous random variables:

\(E[E[Y|X]]=\int_{-\infin}^{\infin}(\int_{-\infin}^{\infin}yf_{Y|X}(y|x)dy)f_X(x)dx
\\= \int_{-\infin}^{\infin}(\int_{-\infin}^{\infin}y\dfrac{f(x,y)}{f_X(x)}dy)f_X(x)dx
\\= \int_{-\infin}^{\infin} \int_{-\infin}^{\infin}yf(x,y)dxdy
\\= \int_{-\infin}^{\infin} y \int_{-\infin}^{\infin}f(x,y)dxdy
\\= \int_{-\infin}^{\infin} y f_Y(y)dy
\\= E(Y).\)

The process of the proving includes the concept of conditional expectation, which can be learned from this article.

Covariance

In any bivariate distribution,

\(Cov[X, Y] = Cov_X[X, E[Y| X]] = \int_x(x - E[X]) E[Y| X]f_X(x) dx.\)

(Note that this is the covariance of \(x\) and a function of \(x\).)

Proof for discrete random variables:

\(Cov[X,E[Y|X]] = E[X-E[X]][E[Y|X]-E[E[Y|X]]]
\\=E[X-E[X]][E[Y|X]-E[Y]]
\\=E\{[X-E[X]]E[Y|X]-[X-E[X]]E[Y]\}
\\=E[X-E[X]]E[Y|X]-E[X-E[X]]E[Y]
\\=E[XE[Y|X]-E[X]E[Y|X]]-E[X-E[X]]E[Y]
\\=E[XE[Y|X]]-E[X]E[E[Y|X]]-E[X-E[X]]E[Y]
\\=E[XE[Y|X]]-E[X]E[Y]-E[X-E[X]]E[Y]
\\=E[x\sum\limits_y y P(Y=y|X=x)]-E[X]E[Y]
\\=\sum\limits_x \{x[\sum\limits_y y P(Y=y|X=x)]P(X=x)\}-E[X]E[Y]
\\=\sum\limits_x \{x[\sum\limits_y \dfrac{yP(X=x,Y=y)}{P(X=x)}] P(X=x) \}-E[X]E[Y]
\\=\sum\limits_x \sum\limits_y x y P(X=x,Y=y)-E[X]E[Y]
\\=E[X Y]-E[X]E[Y]
\\=Cov[X,Y].\)

Key Steps: \(E[XE[Y|X]]=E[X Y]\), \(E[E[Y|X]]=E[Y]\).

Proof for continuous random variables:

\(Cov[X,E[Y|X]]=E[XE[Y|X]]-E[X]E[Y]
\\=E[x \int_{-\infin}^{\infin} y f_{Y|X}(y|x)dy]-E[X]E[Y]
\\=E[x \int_{-\infin}^{\infin} y \dfrac{f(x, y)}{f_X(x)}dy]-E[X]E[Y]
\\=\int_{-\infin}^{\infin}[x \int_{-\infin}^{\infin} y \dfrac{f(x, y)}{f_X(x)}dy]f_X(x)dx-E[X]E[Y]
\\=\int_{-\infin}^{\infin} \int_{-\infin}^{\infin} x y f(x, y)dydx-E[X]E[Y]
\\=E[X Y]-E[X]E[Y]
\\=Cov[X,Y].\)

Inference

If random variable \(\epsilon\) is mean independent of random variable \(X\), then \(\epsilon\) and \(X\) are linear irrelevant i.e. \(E[\epsilon|X] = E[\epsilon](=0) \Rightarrow \rho_{\epsilon X}=0\)

Proof

\(E[\epsilon|X] = E[\epsilon](=0), Cov(\epsilon, X)=Cov(E[\epsilon|X],X) = Cov(E[\epsilon],X) = 0 \Rightarrow \rho_{\epsilon X} = 0 .\)

Decomposition of Variance OR Law of Total Variance

In a joint distribution,

\(Var[Y] = Var_X[E[Y| X]] + E_X[Var[Y| X]].\)

Proof for Law of Total Variance

\(Var[E[Y|X]]+E[Var[Y|X]]
\\= E[E[Y|X]-E[Y]]^2+E[E[Y|X]^2-E^2[Y|X]]
\\= E[E^2[Y|X]]-E^2[Y]+E[E[Y^2|X]]-E[E^2[Y|X]]
\\= E[E[Y^2|X]]-E^2[Y]
\\= E[Y^2]-E^2[Y].\)

The proof above uses the law of iterated expectations several times. A deeper and more direct understanding of the Law of Total Variance and whose relation to the K-means cluster and OLS can be found in this article.

Law of Iterated Expectations & Covariance的更多相关文章

  1. Pattern recognition and machine learning 疑难处汇总

    不断更新ing......... p141 para 1. 当一个x对应的t值不止一个时,Gaussian nosie assumption就不合适了.因为Gaussian 是unimodal的,这意 ...

  2. 齐夫定律, Zipf's law,Zipfian distribution

    齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...

  3. Ill-conditioned covariance create

    http://www.mathworks.com/matlabcentral/answers/100210-why-do-i-receive-an-error-while-trying-to-gene ...

  4. Conway's law(康威定律)

    Mel Conway  康威在加利福尼亚理工学院获得物理学硕士学位,在凯斯西储大学获得数学博士学位.毕业之后,他参与了很多知名的软件项目,如 Pascal 编辑器.在他的职业生涯中,康威观察到一个现象 ...

  5. 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values

    Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...

  6. 墨菲定律-Murphy's Law (转载)

    墨菲定律 “墨菲定律”(Murphy's Law)亦称莫非定律.莫非定理.或摩菲定理,是西方世界常用的俚语. “墨菲定律”:事情往往会向你所想到的不好的方向发展,只要有这个可能性.比如你衣袋里有两把钥 ...

  7. BendFord's law's Chi square test

    http://www.siam.org/students/siuro/vol1issue1/S01009.pdf bendford'law e=log10(1+l/n) o=freq of first ...

  8. Educational Codeforces Round 13 D:Iterated Linear Function(数论)

    http://codeforces.com/contest/678/problem/D D. Iterated Linear Function Consider a linear function f ...

  9. 帕金森定律(Parkinson's Law)

    帕金森定律(Parkinson's Law)是官僚主义或官僚主义现象的一种别称, 是由英国历史学家.政治学家西里尔·诺斯古德·帕金森(Cyril Northcote Parkinson)通过长期调查研 ...

随机推荐

  1. Docker容器虚拟化

    Docker容器虚拟化 目录 Docker容器虚拟化 虚拟化网络 单节点容器间通信 不同节点容器间通信 虚拟化网络 Network Namespace 是 Linux 内核提供的功能,是实现网络虚拟化 ...

  2. ASP.NET Core :容器注入(二):生命周期作用域与对象释放

    //瞬时生命周期 ServiceCollection services = new ServiceCollection(); services.AddTransient<TestServiceI ...

  3. MySQL之安装(linux两种版本版本安装)

    LinuxMySQL安装(Mysql5.5版本) 第一种 有安装包的安装方式 1.下载地址: http://dev.mysql.com/downloads/mysql 2.检查当前系统是否安装过mys ...

  4. Vue学习之--------Vue中过滤器(filters)的使用(代码实现)(2022/7/18)

    1.过滤器 1.1 概念 过滤器: 定义:对要显示的数据进行特定格式化后再显示(适用于一些简单逻辑的处理). 语法: 1.注册过滤器:Vue.filter(name,callback) 或 new V ...

  5. ModuleNotFoundError: No module named 'XXX'

    先来一张表情包: pycharm在小黑框使用pip安装某个包,在解释器没有找到某个包,所以运行程序的时候总是报错. 我相信大家可能都遇到这样的问题. 我下载有3.8.3.10版本的python,我py ...

  6. js和jquery页面初始化加载函数的方法及顺序

    运行下面代码.弹出A.B.C.D.E的顺序:A=B=C>D=E. <html> <head> <title>首页</title> <scri ...

  7. 视频服务HDR Vivid 还原色彩,让所见成“真”

    如今,视频正在以一种前所未有的方式渗入日常生活,是当下人们记录生活最热门的方式.所以,用户对视频的画质要求越来越高,App想要吸引更多的用户,拥有视频画质新技术的强力支撑很关键. HDR(High-D ...

  8. kubeedge架构与核心设计---https://bbs.huaweicloud.com/webinar/100009

    今天是kubeedge的第一节课,今天主要带大家回顾一下云原生和边缘计算的发展历程 然后我们会重点介绍一下kubeedge这个项目,他的设计背景和核心理念与我们整体的架构 首先是我们来简单回归一下云原 ...

  9. 区分mbr与gpt分区

    查看分区类型 [root@localhost ~]# parted -l|egrep 'dev/|Part' Warning: Unable to open /dev/sr0 read-write ( ...

  10. .NET MAUI 安卓应用开发初体验

    一..NET MAUI开发环境搭建&安卓SDK和安卓模拟器安装提示网络连接失败问题解决 引言 本节目标是帮助第一次搭建.NET MAUI开发环境,在下载安卓SDK和安卓模拟器过程中一直提示网络 ...