多重集的组合数公式得记下。cf451E就是这个的裸题

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const LL mod=1e9+; int n;LL m; LL quick_pow(LL A,LL p)
{
LL ret=;
while(p!=)
{
if(p%==)ret=(ret*A)%mod;
A=(A*A)%mod;p/=;
}
return ret;
}
LL jiecheng(LL k)
{
LL ret=;
for(int i=;i<=k;i++)ret=(ret*i)%mod;
return ret;
} LL a[];
LL calc(int zt)
{
LL u=n+m-,cnt=;
for(int i=;i<n;i++)
if(zt&(<<i)) u-=a[i], cnt++;
u-=cnt;
if(u<n-)return ; LL ret=;
for(int i=;i<=n-;i++)
{
ret=(ret*(u%mod))%mod, u--;
}
return (cnt%==)?ret:-ret;
} int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
scanf("%d%lld",&n,&m);
for(int i=;i<n;i++)scanf("%lld",&a[i]); int li=(<<n)-; LL ans=,ny=quick_pow(jiecheng(n-),mod-);
for(int zt=;zt<=li;zt++)
{
ans=(ans+calc(zt)*ny%mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
return ;
}

cf451E

bzoj1101 没什么难度。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL; bool v[];
int pr,prime[],u[];
void mobius_inversion()
{
u[]=;pr=;
memset(v,true,sizeof(v));
for(int i=;i<=;i++)
{
if(v[i]==true)
{
prime[++pr]=i;
u[i]=-;
}
for(int j=;j<=pr&&i*prime[j]<=;j++)
{
v[i*prime[j]]=false;
if(i%prime[j]==)
{
u[i*prime[j]]=;
break;
}
else u[i*prime[j]]=-u[i];
}
u[i]+=u[i-];
}
}
int solve(int n,int m)
{
int li=min(n,m),last,ans=;
for(int i=;i<=li;i=last+)
{
last=min(n/(n/i),m/(m/i));
ans+=(u[last]-u[i-])*(n/i)*(m/i);
}
return ans;
}
int main()
{
mobius_inversion();
int T;
scanf("%d",&T);
while(T--)
{
int a,b,d;
scanf("%d%d%d",&a,&b,&d);
if(d==){printf("0\n");continue;}
a/=d;b/=d;
printf("%d\n",solve(a,b));
}
return ;
}

bzoj1101

0x37 容斥原理与莫比乌斯函数的更多相关文章

  1. BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数

    emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...

  2. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  3. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  4. 51Nod 欢乐手速场1 B 序列变换[容斥原理 莫比乌斯函数]

    序列变换 alpq654321 (命题人)   基准时间限制:1 秒 空间限制:131072 KB 分值: 40 lyk有两序列a和b. lyk想知道存在多少对x,y,满足以下两个条件. 1:gcd( ...

  5. 【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数 ...

  6. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  7. BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)

    如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...

  8. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  9. 数学(莫比乌斯函数):BZOJ 2440 完全平方数

    Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他数的热爱. 这 ...

随机推荐

  1. 在量化金融中15个最流行的Python数据分析库

    Python是当今应用最广泛的编程语言之一,以其效率和代码可读性著称.作为一个科学数据的编程语言,Python介于R和java之间,前者主要集中在数据分析和可视化,而后者主要应用于大型应用.这种灵活性 ...

  2. BZOJ 2659 数学

    思路: 一开始以为是真·欧几里德 a,b来回消 (其实用不了那么麻烦) 我们发现 这是一个矩形 求一下整点数 完了.. 要特判 p=q的情况 //By SiriusRen #include <c ...

  3. python ansible api

    #!/usr/bin/env python # -*- coding: utf-8 -*- # @File : test2.py # @Author: Anthony.waa # @Date : 20 ...

  4. NFA

    任意正则表达式都存在一个与之对应的NFA,反之亦然. 正则表达式 ((A*B|AC)D)对应的NFA(有向图), 其中红线对应的为该状态的ε转换, 黑线表示匹配转换 我们定义的NFA具有以下特点: 正 ...

  5. jsp指令介绍

    JSP指令(directive)是为JSP引擎而设计,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分. 在JSP 2.0规范中定义了三个指令: 1.page指令 2.inc ...

  6. postgreSQL格式化时间的函数详解

    数据类型格式化函数:    PostgreSQL格式化函数提供一套有效的工具用于把各种数据类型(日期/时间.integer.floating point和numeric)转换成格式化的字符串以及反过来 ...

  7. java线程入门知识

    为什么需要多线程? . 模型的简化,如某些程序是由多个相对独立任务的运行: . 图形界面的出现,输入.输出的阻塞 . 多核CPU的更好利用 . 异步行为的需要 Java多线程的特性: . 程序的入口m ...

  8. 06--C语言数学函数

    在使用C语言数学函数时候,应该在该源文件中使用以下命令行: #include <math.h> 或 #include "math.h",这里的<>跟&quo ...

  9. VMware 虚拟化技术 创建虚拟机

    原文地址:https://www.linuxidc.com/Linux/2017-03/141972.htm 云最成熟的架构是IaaS(Infrastructure as a Service),其中用 ...

  10. ZooKeeper概念

    这可能是把ZooKeeper概念讲的最清楚的一篇文章 相信大家对 ZooKeeper 应该不算陌生,但是你真的了解 ZooKeeper 是什么吗?如果别人/面试官让你讲讲 ZooKeeper 是什么, ...